a2 United States Patent

US009135778B2

(10) Patent No.: US 9,135,778 B2

Patel 45) Date of Patent: Sep. 15, 2015
(54) LICENSE MANAGEMENT SYSTEM (56) References Cited
(75) Inventor: Pravinkumar Patel, Las Vegas, NV U.S. PATENT DOCUMENTS
(US) 7,094,154 B2* 8/2006 Kellermanetal. ... 463/42
. . 2002/0029347 Al 3/2002 Edelman
(73) Assignee: Bally Gaming, Inc., Las Vegas, NV 2006/0073890 Al* 4/2006 McAllister et al. 463/29
(Us) 2006/0281555 Al* 12/2006 Kellerman et al. 463/42
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 1467 days. P 11203125 A * 7/1999 coovvcormn, GO6F 9/06
* cited b i
(21) Appl. No.: 12/263,342 clied by examunet
. Primary Examiner — James A Reagan
. v £
(22) Filed: Oct. 31, 2008 74) Attorney, Agent, or Firm — Brooke W. Quist; Marvin A.
€y, A8
(65) Prior Publication Data Hein; Philip J. Anderson
US 2009/0124374 A1 May 14, 2009 (57 ABSTRACT
The license manager provides an automated process that
reduces the need for human interaction associated with
Related U.S. Application Data licensing components, distribution of the same, product dis-
. . .. tribution, debugging, product building, assembly, installa-
(63) Continuation-in-part of application No. 11/938,249, tion, configuration and maintenance. In addition, there is an
filed on Nov. 9, 2007, now Pat. No. 8,900,054. interface for use by regulators that allows the regulators to test
(60) Provisional application No. 61/029,612, filed on Feb. and to receive notifications from the license manager. Finally,
19, 2008. there is a third party interface to facilitate equipment add-ons
to the system. The license management system provides
(51) Int.CL enablement/disablement of software products, generation
GO6F 21/00 (2013.01) and maintenance of accounting records, and logs for licenses
GO7F 17/32 (2006.01) that are generated and distributed throughout the system. An
(52) US.Cl ' audit trail is also created that includes who authorized the
i) purchase of the license, as well as audit trails relating to
CPC s GO7F 17/323 (2013.01); GO7F 17/32 different system levels to verify system security. Finally, a
. . . (2013.01) change notification system provides for the control of any
(58) Field of Classification Search changes to the system and monitors these changes on a multi-
CPC oo GOG6F 21/10 tiered level within the System.
USPC ittt 705/50-79

See application file for complete search history.

101 CMP (Casino | 115
1 Market Place)

13 Claims, 40 Drawing Sheets

r.rog
PTG (Player 1 (Third -
- Tracking Party 1506
Gateway) (Ticket
Information

ROCKET etc

107

System)

103
) €5 Admin [o777]
MT (Central Site (Central
(Management] Administration)! System

Terminal) \Database) J
J Sub Apps:

p— 1053 [745 (Blayer BGH (Bingo SH (Remote s
Account Gaming] Systems |—
Server
System) Manager) Manager) 'I:g%er
CT (Cashier Site Monitor
Terminal)
HC BGC (Bingo PCP (Program
(Handheld Gaming Control Fanel)

Cashier)

Controller)

Transaction

W\ view

Server

US 9,135,778 B2

Sheet 1 of 40

Sep. 15, 2015

U.S. Patent

2
uonpesuelf
[man [\,
(aseqejeq (4ajj0.3u0) (Ja1yse)
(joued 013000 _ 51004 9214 buiwen playpueH)
weibosd) dod J9A8ld) gacd obuig) 294 o4
(Jeuiag
0310, .
JOIU w\ MMM 191yse)) 19
(iabeuey (1abeuey (LsjsAs
49400/ SwagsAs bujwey Un022 1oAISS
£d 30UBY) Emml(; &s.& wWog JoAp, 4 i iated
:) 1) Svd [\ o
:sddy gns
\Tum..m&_g (feurisay (9seqejeq
wajshs (uonesiuupy huswabeuey) bujwes 576
[2qua)) ays [eua)) IW ueipur) gaof -H
4450 upy 5O F 0T
—_— e |
08 1IN0
(W ™ 191
uoReuLouy b
o1 speoy (oepaur 17 (Aemaien
; 00l Auey buppesy
| PayL) Idl 49/8ld) D1d
[_ll\ 601 L \ _
uodnone 92%ld J51EN
0 SIT S 0UISEY) dWD

IVJE]

MEN

US 9,135,778 B2

Sheet 2 of 40

Sep. 15, 2015

U.S. Patent

Q Q T h
sited abessaw byuoy uordo/peojumop §79« "' T sones Wby
8Jeoyipar) anssy - gem 529 Aaaag
aedljiia) 1senbay | v OWSIW SZ9 $58004d
r “ NETIT
peojumog (104 syied puewwioo/ssep ajbuls suibug 79 uonesnbyuo)
UoRNGLISI] peojumog Aleigry Ol UsY0.q 818 586eSSall §75) uondp
eojumoq
2/0MY05) daaS P
- . A0INIDS JBpuer
g 1orIBS OWSW [eUIBIU] 58553204 MoK peojumoa ~
SJEYIIBD \
o ¥S0H 529~ 117
4 q)
Aiopaug sapy OWSW SIS GO
J9jnpauyas .\.m\%mﬁm
JOAIIS ,
Sir
' Hodsy 70 B BIINIBS Gop JaIpueH NS G
60c | [— OWSW e abessapy/puewwion| | voneinbyuo) uondp uonenbyuo)
HoMIoN 579 onssy
e1eq 9)9/90/538pd/Lasur/188S = SRS SIINIBS gom
gem Jojpuey
’ ~ peojumoq
peojumoq
Q
SIS —
(ouz, pueiuwioy anssi/ejeq isenbay f.mmm
J043u0D ouised) dad

Ioc

no—

sperpuy

=~

=

M

&

[-vc O

US 9,135,778 B2

Sheet 3 of 40

Sep. 15, 2015

U.S. Patent

c-ve Ol

0

(un

10559004 UIBW) N

A

uoReinbyuo)
“oussen
< =

T —

a/npayas
“ouisen

-

g —
peojumog

“ouise)
-

R — T s 4T 4 g

US 9,135,778 B2

Sheet 4 of 40

Sep. 15, 2015

U.S. Patent

q¢ 9l

- - vonenbyuo) 3npaLYIs peojumog
3107 ouse /£ -
D OUSED HAPY OUSED “oujse) ouise) “ouise) W
- - - - =
» saseqgejeq g
<<opes>

1 -
+aIPUeH pue B0 38
uoneinbyuo) IpueH RS B0INIBS Gom BIINISG N
wordp peojumog qom 48inpayas uoneInbyuo) qaM peojumog 38
T3

; SAIIAIBS GO —

N
(Julod uonngLsiq Aeigyy Aopaiig FEIVED) 187185 m S
pecjumog asemyos) dags | | peaumog || M0 || ooy fodoy 105 aseaumian | |OSWSH| | SH 8 g
I
P A 1Y) B
T f SJUBUOALI0D YoM~
(\ ' O— ~N —O—
Il | P
(3un gem S¢9 .N%E.M g .W =
405532044 o— : J8inpaips oANIBXT m wu
UIew) Ndw b ajpuey 3 &
ETT

L — JSOH §79—/ SDINIBS —
53
111 $5p) (1oued jos3u0) 3 8
0U522) 400 2
N————————— SJUBUOAWOY) YioMIB — — no—- U S

US 9,135,778 B2

Sheet 5 of 40

Sep. 15, 2015

U.S. Patent

MBS 4adS

J¢ ‘Ol

0z-Qoz/ eydyy

-

3

aseqejeq Juonedddy

579 (dDD) fpued

529
j0u0) ouse)

019§ ¥SY 035D

Y49,

YoIMS
0562 095D

I
= ZICMOTA
[ﬁ aupyoew Jad s3jqes 7

Wa)sAs Juswabeuey 10/S

US 9,135,778 B2

Sheet 6 of 40

Sep. 15, 2015

U.S. Patent

ac i

4 0062 09512 008€ 0351) 00%9 0951)
(YJoMJaN 100}4 8O0 Hoeg) (B0 yoeg)
daas /e v epoN
uonedyddy NE)
0185 1)S
SIT SIoAIBS
uonelddy
= —_— , OWSW SII 19/8S SIS
. uonoesuel
A - 10 Il §Z9 SJeoILIB) g 8poy J83sn[) -
@ @ 181135 TS _\ID
=~ SII diIN dvai —
SNA doHaG Id
_ 100/ 0UISB) N a0lY0 yoeg A 90IY0 Yoeg)

US 9,135,778 B2

Sheet 7 of 40

Sep. 15, 2015

U.S. Patent

Ve O

A punogino

punoguy

g51 /1e1as
Asuiayy3

10558201
/=N podsuel] A..II.-/\ 8bessay A.“—\-/

18n0Y
puewio)

Jodsuel; puels, §0g

foRu0) 04

W99

US 9,135,778 B2

Sheet 8 of 40

Sep. 15, 2015

U.S. Patent

m M. Q .N h\ Jodsuel]
~a—— PUP J0SSBI0I] |t —
-
abessay | .
e 21
| |
_ |
— m _l llllllllll = w1 2/00dNS pieog (= m
- o 297 -— I || Awowey
| | ||| wuersisiad wo3
- _ o] S5E[D S50 et "
| ! _ |
ol | | |
S bt 55810 05530010 |~ “ _ | SJUSAT WOT
1 _ |
S m " | 558D BUIGE) |-t “
S | _ |
O R S O - DA R
| uoneaunuwwos ! _
N = !
T Luoneaunuwmon [~ |
|1 “ _
- M = ssep aomap f] i | jo13u0) W93
| | T | | _'
] uopduasgns |~ | 1 bWgog |- “
_ |
~={1055300.4 8bessap — _ | _PEIE08NDT _ | " _.V
| | Buondo wWo3
L __lmogog 4

US 9,135,778 B2

Sheet 9 of 40

Sep. 15, 2015

U.S. Patent

1055320144 8bessayy

{uoness suoneaunuwos pue sayy doay |

{\ 405583044 2beSsSay 0] pueuiio) punoging |-

/0552001 abessa 0] pUeILIO) pUNOGINQ |

| 2 405503044 beSSaY 01 pUewILIo) punogIng g

Lz 405520044 abessap 03 puewsuso) punoging =

J€ Ol

é
Ja3noy puewwios

Y

L

98nang)
uj puewiwo)

sanand
uf puewiio)

Y

ponang
Ui pueunion

gananpd
uj puewwo)

zenand
uy puewiwo)

Y

18nand
Uy puewo)

—/

|
|
SuonaLISGNS III..

S955810 G084 WOF JE Wodj SPUewiuioy punoqing
T

[03u0D 09

US 9,135,778 B2

Sheet 10 of 40

Sep. 15, 2015

U.S. Patent

a¢€ ‘o

| _ dsq
| _ 1043U00 G0 U0d4/0]
| _ — STIEJS WILIOD PUE BAIJY/0a3Y
I e e e _
| _T_/ 1 -/
— _\ 4bo| Yovdog/m
L 133005 Japyng ' V|
At&%& Il 0f _mmmmmma abessap N 3501 & JSOH wol4 spuewniod} N O isoy A&Sm woy spueuntio)
| L__________ Nossaooq afiessop e
_|I||||.|||.l|||I|II|HHHHHHHHHHHHHH |
L L
~/ bo)/ils) -/
—1 2 ! YOvaog/m
[1833005 Japing “ “ _\
A odsues} 0f _mmmwmms bessa *** 1504 A@ 150K Wold spueLio 0 150y A&%« Woud spuediioy o
I
o """ 40559904 966553 Ll S
—/ } T -/ X
—/ 2160 YIvg08/M | S
L 1913005 sapyng \ N V| g
A odsuel] 0f mm&_,mmz abessap 7 150K Ao 150K w4 spuewioy 7 O Isoy 48)N0Y Wol4 spuewiio)
= e
L 7 105590044 9bessap Ll
—n/ 250v808/m] ™
L Jap0ds Jspjing \r " _ _ J\
Ato%%t 0} _mmm.h_mm: obessay T 150 /m_q JS0H wou4 spuewnoy] T O isoy Aﬁ%« Wwioi4 spueLior
]
L pdossooydbessay _______ L
Lo sossooibessy]

US 9,135,778 B2

Sheet 11 of 40

Sep. 15, 2015

U.S. Patent

EIANIJE]

851 /1euds f1euddiyiq

|||||||| 1 dsd

SR T

_ N

NIE|

V

N 105580014 8bessay Woi

dOHS

N

dLH

A@m%mﬁ wiwos of

_ V|

_
_
_
]

dvos

N

55

_ d

Z 105530014 abessap wiold

]
A " 1055301 96eSSay W4

]
|
!
]

-/

, V|

]
ATN 10558204 abessapy wold
!

Jodsuely

5105580044 2bessay

US 9,135,778 B2

Sheet 12 of 40

Sep. 15, 2015

U.S. Patent

Ve "OI4

Ayjeuonouny pue 23e3s by awwes) 03 ss80y 1984iq

by aen

NEIVELS
uoleinbyuo)

dI 350H

«

/0203044 gog

US 9,135,778 B2

/0

Sheet 13 of 40

Sep. 15, 2015

U.S. Patent

gy Ol

g04
Wy 3soH

aoeLIaU] SO

I

Jay8y) ainy

N

JOAIBS
uotjesnbijuo)

SiagaJdIur 1SoH

a0eLIau] JUBD

dnjas awes)

dnjas wousqg

j04U0)
aunjo/

Jabeuey
aonaq

SJUBYD UoReINBIL0)

U.S. Patent Sep. 15, 2015 Sheet 14 of 40 US 9,135,778 B2

Register Handlers

|
Register Config File

Y
Register for Configuration Option change notifications

FIG. 5

Operator makes a configuration Change

Y

Test Set Option Value To Configuration Manager>
Test Result Handler <: From Configuration Manager |
No Valid Yes
?
Y \/ +
Change Operator Field to Red Change Operator Field to Green

Display Error (s) to Operator

FIG. 6

US 9,135,778 B2

Sheet 15 of 40

Sep. 15, 2015

U.S. Patent

A

Jojesadp 03 (s) Jouis Aeidsig

usal9 03 pjal4 103eadp
abuel?) ‘pares sem eyeq pay 03 suordo pajiej sbuey)

*

&. !

s34

Pien oN

[Zabeuey uoneinbyuoy EE..\._V

JB|pueH Jnsay 159

A Jabeuey uoReinbijuo) o]

sanjeA uoRdp 1es

!

abuey) uoleinbiuos saAes 103esadp

U.S. Patent Sep. 15, 2015 Sheet 16 of 40 US 9,135,778 B2
Configuration Configuration Host
Client Manager Interpreter Host System
Register Handler
-
Register Option
=1 Configuration
Change
Game Ready
Event
Template Update
—
Configuration
Test Set Change
Configuration
Test Rules |
— Test Results
= Report Errors
e e — — —
Set Values
e
Change Handler
- Report Success
Tt

US 9,135,778 B2

Sheet 17 of 40

Sep. 15, 2015

U.S. Patent

||||||||||||||||||||||| T
|] _
. . _
) DR .
uoneinbyuo) 904 I aoeiau] N
Lo voijeinbiyuo) Lo aInpoy by awe.
m m 1504 909 (wxjuondop | | | PPOW W BULIES
| [owey nuay] | | | —
Do :9ji{ byuon L
soBLIaUT 03P _" m N
| ol eoBLIAIU]
| ! m Mo%%wo m | U10ads
Yoeqpaa suojysiuyaq o Qk N aInpoy
18501 Aeidsig | _ o005 [ES ||
[[
apo) Aeidsig |] A
—] e ro— .QQQU
ﬂ:&,\ ksmkmﬁo suoniuaq biyuoy byuoy sedng mmmmwm%»\ abueyn (awep nuay)
SUIBN NUBY) | — e 9y 159/
m%.S:_Em_\ byuon .Am%.c.E,EQ byuon SINPOH 3P0D
Y - I 13PN N /040D

U.S. Patent Sep. 15, 2015 Sheet 18 of 40 US 9,135,778 B2

Power up Initialization
And Recovery
Game Mor Modules| Menu Name JConfig Obi Super Config
i ' o
L Get Option Values: D Load XML Config File ;
! Register '
] M |
:_G__g_gr_s_cgr_rgnf '—/‘ﬂes»{ Configuration Options |
I f —
! | Get Current Values __|
l \Super Config's current va/ues‘
[T
! Powerhit Recovery
f of Changes D Compare Game Mgr's l/a/ues
T ! to Super Config's Values
l

FIG. 10-1

US 9,135,778 B2

Sheet 19 of 40

Sep. 15, 2015

U.S. Patent

| i | I
_ | | _
| 8IS MU ABIESIT | _ “ "
| | djefdwen abuey) | _ =
“ “ | o SBbuey) Juawayduy |
| | | uoneayaoN abuey) | M
_ ! e — _ _
_ _ _ S)nsay 1531 _ _
| _
_ _ m -
| _ | s}insay jsaj | _
| | edwo) sbueyy | | |
w Jsanbay anes Jasn W _ | _
L | | _ _
| ajepsmau fedsig | | | |
| - Tsynsoy el _ !
w ﬁ =g : |
| | w Synsay 1531 _ “
| _ | -
w | o | 5}insey 1sai | W
o S)ns9y 159 =1 _ !
w uopdsps sesn | ey 20l _ “ "
| _ _ | |
! suondp Aeidsiq _ | | |
_ "A* suopdp byuay winey |“ “ _
_ _ | _ _
! I suondp byuop jo9 | _ :
aoegajuy 03pi)] nuay 10181330 | swey nusy] Bijua) Jadng g0 Byuop] awey nusy])
SI0447 O "UORIDIIS PosS20e 5/
MU 8Y] SaAes pue abueyd nuay Jojessdp
U028/ € Sayew Jojessdp - !
9587 [eUILLION N Q N. wN.u\

U.S. Patent Sep. 15, 2015 Sheet 20 of 40 US 9,135,778 B2

Other Host Configuration
Configuration
Option Listeners Bob Config GSA Bob
Transaction

Transaction

onfiguratio
Listener

Test Results

Test Request
Change Notifications

Option values
and definitions

|
|
|
I Bob Config
|
|
|

Option values

Touch Controfler

Configuration Mgmt Operator Menu

and definitions
Test Results Option and
Test and tast request
Test Request Change Reguest
Change Notification ' Operator
| Mgr
Processed Touch o
| Screen Feedback / Graphical Display
‘ Requests
Graphica Touch
‘ Display Screen
l v

FIG. 11

U.S. Patent

Modified and

Error Free
Date

Ask user it
modified data
should be
saved

Save Configuration Options to
Super Config

Y

- Clean Up Resources
and Exit Menu

Sep. 15, 2015 Sheet 21 of 40 US 9,135,778 B2
Initialize Graphics Objects
Y
Get Configuration Options from
Super Config
Y
Update Display -
Exit Request Y Save Request
Send Configuration Changes to
Super Config
Y Option Modified
? Send Configuration Changes to
Super Config for Test
Finished
Proposing
Results
‘ Text Complete Received

Process Text Complete Recall
from Super Config

FIG. 12

U.S. Patent Sep. 15, 2015 Sheet 22 of 40 US 9,135,778 B2

BIOS Control
Program

Read boot.id file from
partition 1

Is boot field

Zero
?

Boot alternate
environment

Boot boot id
environment

FIG. 13

US 9,135,778 B2

Sheet 23 0of 40

Sep. 15, 2015

U.S. Patent

eeq

sbo7

sa|npoy

S1aLo8 188

vl Ol

sabexoeq

auen

uoRied peojumog

D)

uonied Saues

ybe -
saweb
Joou -
Zso
Zs0 — IS0
ISO uoleinbyuoyn
uoRied Xnury uoned Jsajiuep

U.S. Patent Sep. 15, 2015

0S Manifest Partition

0S Compact Flash

Configuration

0S1

052

games

Sheet 24 of 40 US 9,135,778 B2

Game Manifest Partition

Game Compact
Flash

—— games

Manifest Partition

FIG. 15

System Partitions

0s1

0s2

= 0s] Partition

0s2 Partition F] G P .Z 6

U.S. Patent Sep. 15, 2015 Sheet 25 of 40 US 9,135,778 B2

Delete and unpack
Packages - data

FIG. 17

System
Control
Server

add Package
upload Package

U.S. Patent Sep. 15, 2015 Sheet 26 of 40 US 9,135,778 B2

Manifest Digital Signature (160 Bits)
Manifest SHA-1 Hash Value (160 Bits)
r — =={ Control Flag
i Manifest ID (32 Bits)
| Vender Release String (32 Bits)
E Build Date and Time
: File Count (No. of files in manifest)

L File Name Process Flag | SHA-1 (160 Bits)
i File Name Process Flag | SHA-1 (160 Bits)
!

[Fe Name Process Flag | SHA-1 (160 Bits)
| .
| .
I)
{— — =1 File Name Process Flag | SHA-1 (160 Bits)

FIG. 19

U.S. Patent

Hard Drive
Partition Layout

Sep. 15, 2015 Sheet 27 of 40

0S Compact Flash
Partition Layout

#1 /manifests

#1 /manifests

#2 /osl

#2 /0s1

#3 Jos2

#3 /Jos2

#4 extended partition

#4 extended partition

#5 /games

#6 /download

#6 /download

Game Compact Flash
Partition Layout

#1 /manifests

#2 /05l

FIG. 20

US 9,135,778 B2

U.S. Patent

Sep. 15, 2015

Sheet 28 of 40

Calculate SHA-1 HASH for —
Manifest Contents and JUZ?;Z;}ZZZ;{;SHOM)
Valigate DSS Signature T

! BIOS Self

Validation
No
BIOS Valid
Yes P
Update cumulative
Manifest SHA-1 Hash
Validation
Error Stop
o 1 1
Last Manifest

Calculate and Validate SHAI
Hash of Linux Kernel and
INITRD contents

No
HASH Valid

?

US 9,135,778 B2

| Jurisdiction EPROM

Authentication

No /Jurisdiction

EPROM Valid,

| Read Disk Data |

Date Okay
?

Yes

| Get Public Key

Date Okay
?

Yes

Authenticate
EFPROM

OLD Game
Flash

Calc SHA-1 HASH
and Validate DSS
Signature

?

Load Initial RAM Disk
and Linux Kernel

Y
Pass control to
Linux Kernel

C)

Signature ™\ No

Valid
?

| Read Boot ID file |

Read

successful
?

FIG. 21

U.S. Patent Sep. 15, 2015 Sheet 29 of 40 US 9,135,778 B2

(Linux Kernel Entry

from BIOS
Y Validation Driver)
Load initrd and
linuxrc)
Y Load Manifest
Load Validation Contents into |
driver from initrd memory
\
Add contents to
running SHA-1 value

Last Manifest

Display error
and Stop

A

Calculate
SHA-1 HASH
of Game Flash
Contents

Continue loading
system and
validate each file
as it is opened

A

FIG. 22

U.S. Patent Sheet 30 of 40

Sep. 15, 2015

Program Linux Kernel Open Fife

I I
| I
! !
I |
| |

Validation Kernel Module

US 9,135,778 B2

Y

F [G 2 3 I C Halt Processing)

Fife v
(Program Validation \. & Look up File Name
Opens a file | Active | | in Validation Table
I ? !
| y |
! |
| |
| |
| !
| |
I |
J I
I |
| |
: |
| | Calculate SHA-1
; || overfile contents
| I
| |
: |
|
| ! | SHA-1 Match
(Return to) I Linux Processes I Yes V; e ;C
] | I
calling Program | Open Command | Validation
| ! Table
| |)
! I {
| |
I !
I Log Error to fault | I Build Error
; log. Display error. | I Messages
| |
| |
|
|
|
|
|
|
|
|

US 9,135,778 B2

release.val

manifest.ma

U.S. Patent Sep. 15, 2015 Sheet 31 of 40
<>
build.cfg
Build_os_Validatin.sh
Code

Modifications +
create_os_manifest.sh

make osflash

=
release.bin

sign_os_validation.sh

manifest.mnt

FIG. 24

~e——
release.img

U.S. Patent Sep. 15, 2015 Sheet 32 of 40 US 9,135,778 B2

AV0S00000320-00.004.bin

!

build _os_validatin.sh

S——

Y

AV0500000320-00.004.val

L

FIG. 25

release. vai

create_os_manifest.sh

-
manifest.mn

FIG. 26

U.S. Patent Sep. 15, 2015 Sheet 33 of 40 US 9,135,778 B2

AV0S00000320-00.004. val

Manifest. mnt build _os_validatin.sh

| ¢

Compact Flasty
AV0S00000320-00.004.img dev/ sda
Code Modifications Build.cfy
* !
make compact flash Build_game_Validatin.sh

Y Y

<~
l release.img I lman/fest. mnt|

FIG. 28

US 9,135,778 B2

U.S. Patent Sep. 15, 2015 Sheet 34 of 40
Send error
message
Reading from Error
the download | | paceive error
driver
A
Queued Received
command command
Y
Processing Process error
download driver
command
Serp il 5 New script | moye waiting
set Seriptis \ M9 | Compare to /s first _ | script to queue
received waiting script new script to
waiting

Y

No script is
executing

o
-

Place new
script in queue

New script is not first (or)
waiting script is already
processing

FIG. 30

US 9,135,778 B2

Sheet 35 of 40

Sep. 15, 2015

U.S. Patent

pajaoued
2dLos
puss

40112
puss

I€ O

paiajap
2dLos

puss

3410S pananb jduos

ananb
LWolj aA0WsYy

sosay anont | OUlIEISU]
Loy aA0WwaY JdLos Loie oy
puss
! buyezsur
buissaoosd
bujjjezsur Jou
bujssaootd ydios _
Jo1i3 . .&8& Jduos
pl02al oy 0/ Y2940

pongoal s
Jduos a3s18p

US 9,135,778 B2

Sheet 36 of 40

Sep. 15, 2015

U.S. Patent

300q9y

4]

paiajap 1o
pajqesip Wo1 pappe sajl Ji
¥ pojojap
20 poppe Jsajuew
Sofly ou)
o3 aigeva-ay |= AN s jo pug | = sbuep | abeyoed
8)8/dwwoo ‘dnueay) 558004
JdLos
| I
pajuelb jou | sbeyoed
vonezIoyny pajueib JX8U 5582044
suoRezuoyIne uonezuoyIny uopped so Jduos
— -
5580044 aYyy dnyoeg aInJexy
* 185 Jou s/
bey s/gesig
. 14Los Jo
WOT 9/Gesiq | s 5o :U% usdsp | awey auu
105 5/ w0 10) e
bey ajqesig

U.S. Patent

BOS

EH Denom Setup

— B Volume Controf

Sep. 15, 2015

Sheet 37 of 40

US 9,135,778 B2

FIG. 33

100

=

I

O 10 Per Line

Q 25 PerLine
ERRORLine and Bet combination Fxceeds Max Bet

65
— EE—] Protocol Setup
I%I Game Setup
— EH Attract Mode
— B Game Configuration
O 1line O 2line
® 5line
O 9Yline O 15Line O 20Line
Bet Per Line
QO 1 Perline QO 3Perline O 5 Perline

©® 100 Per Line

U.S. Patent Sep. 15, 2015 Sheet 38 of 40 US 9,135,778 B2

After Nvram clear of the EGM
(No automation of restoring
previous configuration)

BOB Host [EGM Configuration Class I EGM Processor C/assl
I

I

Get Game Combos

Y

I
!
|
!
!
|

1

|
|
|
1
|
I
|
| |
N
T
Responds with Theme list, and each theme s allowed paytables and denoms :

[

I |

| Get Configuration Allowed Game Combos
;

|

|

I‘* ________________ R R
|

{ Set Configuration of 3 Game Slots !

| ' g

I Change Status I

o — - ————————————— l ————————————————— ~—4[

I

t

: Authorize Changes of 3 Game Slots :

1 ; ‘ 1

| ‘ !

; Change Status |

- — e e e e e e e o o]

| i |
|

| Get Game Combos | :

| g :

| Return with 3 Combos } |

:’*"__“"”“____——""_I }
|

: Activate Game Combos ! :

| > |

| | |

g Saws ______ | |

|

l

|

|

U.S. Patent Sep. 15, 2015 Sheet 39 of 40 US 9,135,778 B2
600~ 400~
SYSTEM
OPERATOR THIRD PARTIES
i
EMAIL
_/—— 200
o201 20— Y = 20— = 20— { |
T usror CENTRAL CENTRAL SILLING |
| SOFTWARE DISTRIBUTION LICENSE MANAGER | CENTRAL
|| vvENTORY CENTER MANAGER ()]
| (CDB) (CDC) (CLM) |
L N~ _ L |
t f-s’oo
ENCRYPTION / DECRYPTION
00—y CONDITIONAL ACCESS
REGULATOR ETHERNET / INTERNET
]
ENCRYPTION / DECRYPTION
CONDITIONAL
ONAL ACCESS LOCAL SITE
OPERATOR
R [0 (LOCAL)
lrz‘zoﬁ Y 130— ¥ 110~ 140 — jl
LIST OF LOCAL SYSTEM
	soFrwage DISTRIBUTION Loﬁﬁvﬁ{gggﬁ		MANAGEMENT
	mventory CENTER) pPOINT (smP)		
(LDB) (LDC) CONSOLE			
]			
134 BILLING PROXY			
(LOCAL)			
b			
A LiceNsE orDERS			
EGM 1 EGM 2 M3 | EeMn

U.S. Patent Sep. 15, 2015 Sheet 40 of 40 US 9,135,778 B2

STEP 1: SMP 140
REQUESTS LICENSE
FROM EGM'S 10

!

STEP 2: EGM'S
REQUESTS LICENSE
FROM CDC 230

¢

STEP 3: CDC 230
RESPONDS TO
REQUEST BY RELAYING
TOLLM 110

4

STEP 4. LLM 110
REQUESTS LICENSE
FROM CENTRAL CLM 210

¢

STEP 5: CLM 210 CREATES
LICENSE AND SENDS TO
LLM 110, WHICH STORES
LICENSE ON CDC 230

!

STEP 6: CDC 230

TRANSFERS LICENSE
TO EGM'S 10 F]G. 35

US 9,135,778 B2

1
LICENSE MANAGEMENT SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of Provisional Patent
Application No. 61/029,612, filed Feb. 19, 2008, which is
hereby incorporated by reference. This application is also a
continuation-in-part of U.S. patent application Ser. No.
11/938,249 filed Nov. 9, 2007 now U.S. Pat. No. 8,900,054,
which is also hereby incorporated by reference. This applica-
tion is related to copending U.S. patent application Ser. No.
12/263,373, filed Oct. 31, 2008, entitled LICENSE MAN-
AGEMENT METHOD, which is hereby incorporated by ref-
erence in its entirety.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document con-
tains material that is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
files or records, but otherwise reserves all copyright rights
whatsoever.

FIELD

This invention pertains generally to gaming machine sys-
tems and methods. More particularly, the present invention
relates to a gaming machine operating systems, gaming
machines, and methods that include downloadable and/or
configurable capabilities.

BACKGROUND

Various networked gaming systems have been developed
over the years beginning at least in the 1980°s. With accep-
tance and utilization, users such as casino operators have
found it desirable to increase the computer management of
their facilities and expand features available on networked
gaming systems. For instance, there are various areas in the
management of casinos that is very labor intensive, such as
reconfiguring gaming machines, changing games on the gam-
ing machines, and performing cash transactions for custom-
ers.

SUMMARY

Briefly, and in general terms, the license manager provides
an automated process that reduces the need for human inter-
action associated with licensing components, distribution of
the same, product distribution, debugging, product building,
assembly, installation, configuration and maintenance. In
addition, there is an interface for use by regulators that allows
the regulators to test and to receive notifications from the
license manager. Finally, there is a third party interface to
facilitate equipment add-ons to the system.

More particularly, the License Management System
(LMS) provides enablement/disablement of software prod-
ucts, generation and maintenance of accounting records, and
logs for licenses that are generated and distributed throughout
the system. An audit trail is also created that includes who
authorized the purchase of the license, as well as audit trails
relating to different system levels to verify system security.
Finally, a change notification system provides for the control

10

15

20

25

30

35

40

45

50

55

60

65

2

of'any changes to the system and monitors these changes on
a multi-tiered level within the system.

The license management system further includes a sepa-
rate and secure interface through which regulators can test,
approve and receive notification of various licensing transac-
tions so that upon product approval, immediate action can be
taken to verify the authorization was secure, including noti-
fying appropriate parties. This process allows for the faster
distribution and processing and or correction feedback, if any.

In one embodiment, the LMS license management change
system has a request process, an approval process, and a
notification process. If a change is made, it is desirable to
notify the appropriate people of such change. In this regard,
Regulators interfaced with the system via a secure and sepa-
rate partitioned area immediately can access downloaded
compliance software. As such, it is no longer necessary to
send out physical media, which avoids both the cost and delay
associated with such transport.

Further aspects, features and advantages of various
embodiments of the invention will be apparent from the fol-
lowing detailed disclosure, taken in conjunction with the
accompanying sheets of drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1is ablock diagram of a gaming management system.

FIG. 2 is a logic flow diagram for download and configu-
ration communications between a gaming server and a gam-
ing machine.

FIG. 2A is a logic flow diagram for download and configu-
ration communications between a gaming server and a gam-
ing machine.

FIG. 2B is a block diagram of a system for download and
configuration communications between a gaming server and
a gaming machine.

FIG. 2C is a block diagram of a system for download and
configuration communications between a gaming server and
a gaming machine.

FIG. 2D is a block diagram of a system for download and
configuration communications between a gaming server and
a gaming machine.

FIG. 3 is a logic flow diagram for a best of breed (“BOB”)
communications protocol.

FIG. 3B is a logic flow diagram for core BOB classifica-
tions within an electronic gaming machine.

FIG. 3C is a logic flow diagram for BOB communications
via a command router.

FIG. 3D is a logic flow diagram for BOB communications
via message processors.

FIG. 3E is a logic flow diagram for BOB communications
via a BOB transport.

FIG. 4 is a block diagram of a gaming system architecture
including a configuration server.

FIG. 4B is ablock diagram of a gaming system architecture
including a configuration server.

FIG. 5 is a logic flow diagram for initialization of an oper-
ating system of a gaming machine.

FIG. 6 is a logic flow diagram for configuration of an
operating system of a gaming machine.

FIG. 7 is alogic flow diagram for saving a configuration of
an operating system of a gaming machine.

FIG. 8 is a logic flow diagram for configuration of an
operating system of a gaming machine.

FIG. 9 is a logic flow diagram for reconfiguring gaming
machines via a gaming server.

FIG. 10 are logic flow diagrams for configuration of an
operating system of a gaming machine.

US 9,135,778 B2

3

FIG. 11is a logic flow diagram of communications during
a reconfiguration of gaming machines via a gaming server.

FIG. 12 is a logic flow diagram related to functions avail-
able via an operator’s menu.

FIG. 13 is a logic flow diagram of a BIOS initialization.

FIG. 14 is a block diagram of storage device partitions.

FIG. 15 is a block diagram of an operating system partition
and a games partition.

FIG. 16 is a block diagram of a manifest partition and
operating systems’ partitions.

FIG. 17 is a block diagram of operating system packages
communicated with a storage device.

FIG. 18 is a logic flow diagram of uploading and down-
loading packages between a gaming machine and a gaming
server.

FIG. 19 is a block diagram of a validation Manifest file.

FIG. 20 is a block diagram of storage device partitions.

FIG. 21 is a logic flow diagram of a BIOS initialization and
validation.

FIG. 22 is alogic flow diagram of a Linux initialization and
validation.

FIG. 23 is a logic flow diagram of a gaming machine file
validation.

FIG. 24 is a logic flow diagram of an operating system
image build.

FIG. 25 is a logic flow diagram of an operating system
validation file image build.

FIG. 26 is a logic flow diagram of a create manifest pro-
cess.

FIG. 27 is a logic flow diagram of a signed operating
system image build.

FIG. 28 is a logic flow diagram of a game file validation
image build.

FIG. 29 is a logic flow diagram of a software download
reading and processing.

FIG. 30 is a logic flow diagram of a SetScript command
processing by a gaming machine.

FIG. 31 is alogic flow diagram of a DeleteScript command
processing by a gaming machine.

FIG. 32 is a logic flow diagram of a script command pro-
cessing by a gaming machine.

FIG. 33 is a user interface display on a gaming server.

FIG. 34 is a logic flow diagram of a configuration change
sequence.

FIG. 35 is a schematic diagram illustrating the topology of
the disclosed license management system.

FIG. 36 is a logic flow diagram of another configuration
change sequence.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Disclosed herein are several embodiments of a gaming
machine operating system that includes download and con-
figuration modules which enable the conducting of external
communications, as well as enabling internal operations to
receive downloads of game and game machine content and
features and to modify game and game machines accordingly.
Gaming machines and methods are also described which
implement the download and configuration capable gaming
machine operating system.

Referring now to the drawings, wherein like reference
numerals denote like or corresponding parts throughout the
drawings and, more particularly to FIGS. 2, 2A, 2B, 2C, and
2D, there is shown one embodiment of a network gaming
environment that utilizes download and configuration
capable gaming machine operating systems of the disclosed

10

15

20

25

30

35

40

45

50

55

60

65

4

embodiments. Additionally, referring back to FIG. 1, an
example slot management system is shown. One conven-
tional gaming machine management system is the XYZ One
System, which is designed to provide essential functionality
for Class 11 facilities. The present example embodiment pro-
vides for a unified gaming machine management system that
offers the full feature sets, which are desirable for a Class 111
casino floor with a rich gaming environment and providing
the flexibility to mix Class II and Class III machines on the
same gaming floor. To accommodate this unification, many
features and functions are needed to provide a robust func-
tional capability. In the example embodiment, an architec-
tural framework is provided that enables the addition of mod-
ules and functionality. Slot Management System 101 uses
standards-based communications protocols, such as HTTP,
XML, SOAP, SSL. Slot Management System 101 is a scale-
able system which includes off-the-shelf components, such as
conventional servers and storage devices.

Slot Management System 101 utilizes standard user inter-
faces for all system front ends, such as a display, keyboard,
mouse, and conventional windows software. An example
front-end may be a management terminal (server) 103 from
which an operator can utilize a user interface to communicate
with the player account system server 105 and review and/or
modify player information contained in a player database
managed by a player account system server 105. The Slot
Management System 101 uses standardized authentication,
authorization and verification protocols, which is imple-
mented and/ or controlled by the S2S (server-to-server) server
107, which enables the secure communication of data and
information between the respective servers within the system.

The third party interface 109 further provides for the incor-
poration of third-party servers and storage devices, such as
IGT Rocket server 111 and Indian Gaming Database 113,
using the standardized authentication, authorization and veri-
fication protocols. The Slot Management System 101 sup-
ports a wide range of promotional tools to enable various
promotional and marketing programs, which may be used in
conjunction with casino market place server 115, such as a
CMP, or another system gaming subsystem. Slot Manage-
ment System 101 includes transaction server 117, for
example a XYZ iView transaction server, which communi-
cates with XYZ iView apparatuses, which are incorporated
with gaming machines connected to the network, where
iView apparatuses include a secondary display connected to a
motherboard including a microprocessor or controller,
memory, and selected communication, player, and/or gaming
software, such as a conventional video wagering game or
multi-media presentations, which may be enabled by a player,
the gaming machine, or the slot management system.

It may be appreciated that transaction server 117 can be
designed to drive and communicate with other network con-
nected apparatuses having a display and user interface. In the
contemplated embodiments, the networked apparatuses, such
as the iView apparatuses, are incorporated with Slot Manage-
ment System 101 to multi-task as both a presentation engine
and a game management unit (GMU). To provide flexibility,
Slot Management System 101 utilizes open standard GSA
(Gaming Standards Association) protocols for ease of inte-
grating various manufacturer’s devices and a windows-based
system for ease of operators (users) in programming and
obtaining data from, and adding data to the system.

Referring now to FIG. 2 and 2A, an example context dia-
gram of Download and Configuration Server System 201 is
shown including control station 203 (for example, a Control
Station with a display and a user interface), Download and
Configuration services block 205 (including, for example, a

US 9,135,778 B2

5

download server or WWW accessible service, a download
handler server or WWW accessible service, a configuration
server or WWW accessible service, an option configuration
server or WWW accessible service, a scheduler server or
WWW accessible service, and a scheduler server or WWW
accessible service), Download and Configuration database
block 207 (including, for example, conventional storage
depositories such as containing a download database, a
schedule database, and a configuration database), network
components block 209 (for example, conventional hardware
and software to support IIS, MSMQ, and DNS, a SQL report
server, an active directory, a certificate server, a download
library, and an SDDP (Software Download Distribution Port),
G2S (Game-to-Server) host block 211 (including, for
example, a download handler, an executive service, an option
configuration handler, a G2S engine, a delivery agent, and a
G2S WWW accessible service), and an electronic gaming
machine (hereinafter “EGM”) block 213 (including, for
example, a facility floor of network connected gaming
machines and tables which may each include an iView or
similar product features and/or a gaming management pro-
cessor unit, which are individually identifiable and address-
able over the network.

Download and Configuration Server System 201 enables
the transmission of software files, packages or modules to one
or more clients, such as gaming machines or tables, via, for
example, a casino network using the Gaming Standard Asso-
ciation’s (GSA’s) Game to System (G2S) message protocols.
The configuration portion of Server System 201 enables the
selecting of specific settings and options on one or more
clients using GSA’s G2S message protocols, such as to
modify the Alpha operating system on conventionally avail-
able gaming machines, third party gaming machines or table
operating systems. The respective subsystems of Server Sys-
tem 201 connect to control station 203 which includes a
common user interface application, such as a Control Panel
(BCP) software application, so that a user can request data
and issue commands for the processing of download and
configuration operations throughout the network.

Download and Configuration Server System 201 may pro-
vide features such as the following G2S download class fea-
tures: (1) The G2S download class provides a standardized
protocol to manage the downloaded content on all G2S com-
pliant gaming machines or tables (EGMs) from all G2S com-
pliant host systems; (2) The G2S download class enables
installation of downloaded packages; (3) The G2S download
class enables the removal of software (uninstall); (4) The G2S
download class enables scheduling of installation and/or
removal of software including enabling scheduling options
that relate to a specific time, EGM state, or interaction with a
host server or technician; (5) The G2S message class supports
reading an inventory of downloaded packages and installed
modules. This provides the capability to effectively manage
the content on the EGM; (6) The G2S message class enables
recording transaction logs for packages and scripts on a trans-
action database accessible through control station 203. This
feature provides an audit capability or transaction tracer for
determining how content came to be on an EGM; (7) Down-
load and configuration server system also may provide the
following G2S option configuration (optionConfig) class fea-
tures, which allows for the selection of various configuration
options; (8) The optionConfig class provides a convenient and
efficient mechanism to remotely configure EGMs; (9) The
G2S optionConfig class provides for downloading options
available from within an EGM.

The Download and Configuration Server System 201
implemented G2S classes (optionConfig, download, and

10

15

20

25

30

35

40

45

50

55

60

65

6

scheduler) is also integratable through secondary displays,
such as the iView, by incorporating, for example, an iView
transaction server. Thus, download, configuration, and con-
figuration options may be implemented at selected EGMs 213
through their respective MPU (Main Processor Unit) or
iViews. In the case of using the XYZ iViews for network
communications, a separate processor board is provided
along with display and user interfaces. Communication chan-
nels are connectable between the iViews and the MPU to
enable the download, configuration, and configuration option
processes. Some definitions of terms and components follow:

Databases—The databases return information based on the
results of a stored procedure call. By example, the following
databases, which are descriptively named, may be utilized:
Core; Configuration; Download; Activity; and Schedule.

BCP (Control Panel)}—As an example, the control panel
application, such as a Control Panel application, can be a
smart client implemented on control station 203 encapsulat-
ing all the functionality to support the command and control
portions of the download and configuration features of a
facility or facilities. Downloads and configuration options
can be remotely scheduled or deployed immediately by a user
through control station 203. Notifications, approvals,
searches, and reports produced through Server System 201
can be viewed by a user through a display or through hard-
copy provided by a connected printer to control station 203.

Control station 203 can be utilized for remote downloading
and configuration of games and game operating systems of
connected EGMs 213. Also, control station 203 can be uti-
lized to download content to or to configure the iView (or
similar components) and second game displays or monitors
(for instance, in cases in which an EGM 213 has two or more
major displays which may also include an additional proces-
sor unit such as, for example, in the case of multiple games
operable on a single EGM 213 on separate displays), as well
as peripheral software for components in the games, such as
bill validators and ticket printers.

Database Web Services—These are world-wide web
(WWW) services that are conventionally available to be re-
used by other user interfaces and service applications con-
nected to Slot Management System 101.

Handlers—These are the logic libraries that are respon-
sible for executing the business logic of the system.

Network Components—The following list of network
components, or portions thereof, may be implemented and/or
required by Server System 201: IIS; MSMQ; Certificate
Server; SQL Report Server; Active Directory; DNS; DHCP.

G2S Engine—This service will receive G2S messages
directly from EGMs 213 and dispatch them to the respective
subsystem of Server System 201 based on the message com-
ponent type.

EGMs—FElectronic Gaming Machines, which may include
tables with processor and/or display components.

iView—For example, a conventional apparatus providing a
player user interface and display at EGMs 213 connected to
the network including the player tracking server and enabling
a player to request and receive information, to receive award
notifications, to transfer credits, and to conduct such activities
through the apparatus as is enabled on Slot Management
System 101. One usage of an iView-type apparatus may be to
display marketing and player tracking information and vari-
ous shows on the occurrence of an award or win by a player.
Such apparatuses may also be utilized as vessels for gaming,
such as with server-based games or even independent games
stored on their respective processor boards. Thus, separate
games may be implemented through the iView-type device,
apart from the main game of EGM 213 controlled by the

US 9,135,778 B2

7

MPU. In turn, the content of the iView may be separately
modified as through downloads or configurations or configu-
ration options.

Control station 203 is able to retrieve from the database and
view all login attempts to the server both successful and
failed. A user may be locked out of access to the control panel
application at control station 203 after too many failed login
attempts. The recorded transaction log may include the login
1D, data, time of login and duration.

The web services may support functionality between con-
trol station 203 and database block 207. The web services
may also support unsolicited messages between the G2S han-
dlers and control station 203.

Server System 201 may maintain a record or transaction
log of login attempts to the server both successful and failed.
The log may include the login ID, data, time of login and
duration. Server System 201 may also maintain a transaction
record or log of all events and activity occurring on Server
System 201. The log may include a record of the login session
in which the event occurred.

The Server System 201 may also maintain a log of com-
munication events with any EGM 213. Server System 201
may also maintain the status of each EGM 213, including:
Game history data; Download status (available, requested,
downloading, applied, rejected); Package information (avail-
able for install, requested, being downloaded, downloaded,
installed); Hardware information; Software Module Informa-
tion; and/or Error conditions.

The Server System 201 may dynamically build packages to
be downloaded based on EGM 213 inventory and available
updates, fixes and new data for EGMs 213. Server System 201
may verify requests from EGM 213, including whether or not
EGM 213 is valid, and that it is in a state to make the request.
All requests will be logged and contain EGM 213’s identifi-
cation number, time and date, specific request, and EGM
status. Server System 201 may communicate with Software
Download Distribution Point (SDDP) servers to maintain a
list of packages that are available for supported EGMs 213.
Server System 201 may supply the location of the SDDP
server when instructing EGM 213 to add a package. Server
System 201 may verity that all required hardware and soft-
ware for a package to be sent to an EGM exists before
instructing EGM 213 to retrieve the package. Server System
201 may support multiple EGMs 213 in multiple sites and/or
facilities and EGMs 213 produced by multiple manufactur-
ers. Server System 201 may verity, using the information in
the package header and the information stored about the
selection of EGM 213, that a software package can be
installed on a selected EGM 213 before instructing EGM 213
to add a package. Server System 201 may be able to track
which packages are installed on any given EGM 213 and
verify the data by requesting a selected EGM 213 to send
package install information. Server System 201 may report
bad images and errors and log them when failed package
installation information is received from an EGM 213. Server
System 201 and SDDP may be used to control all network
pacing, bandwidth, error recovery, and monitoring. Server
System 201 may be utilized for maintaining the location of all
SDDP and the packages available on each.

The Software Download Distribution Point server may be
utilized to maintain all downloaded software packages in a
secure library with the required number of secure backups
defined by a jurisdiction. The SDDP server may be used to
restrict access to the library that stores all software download
packages to only authorized personnel. The access may limit
access, such as to only allow write access to those authorized
to add, delete, and update packages and read access for all

10

15

20

25

30

35

40

45

55

60

65

8

others authorized to access the library. The SDDP server may
provide secure software level firewalls to restrict access to
everything saved on the server. The SDDP server may main-
tain a log of login attempts to the server both successful and
failed. The log may include the login ID of a user, data, time
oflogin and duration. The SDDP server may maintaina log of
all events and activity occurring on Server System 201. The
log may include the login session in which an event occurred.

Software packages added to the software library may be
verified from the package data using an MDS5 or SHA-1 or
some other verification tool. The verification string may be
added to a package header and used to re-verify the package
after it is downloaded to the EGM 213. All verification fail-
ures and related errors may be logged, and the log entry may
contain the date and time, the ID of the person running the
process at the time, and the specific type of error that
occurred. The verification features may also be displayed on
the correct display area.

The SDDP server may be utilized to provide selected
EGMs 213 with the communications port location and IP
address used for sending software package data to the EGM
213. All data within a download package may be compressed
using conventional compression techniques and transmitted
in compressed format. On receipt, EGM 213 may decompress
the downloaded software package.

Referring to FI1G. 2B, a tiered block diagram of a download
and configuration system architecture is shown.

The Presentation Tier may include the Control Panel appli-
cation. The Control Panel application is loaded on control
station 203 which provides a user interface and display
through which the Download and Configuration portion of
the Slot Management System 101 is managed.

The Business Logic Layer may include the G2S Host,
which is comprised of the G2S engine components. The G2S
Host may be used to send and receive the G2S protocol
messages to and from EGMs 213 and other configurable
devices. The G2S Host may also be used for the packaging
and unpackaging of the internal system messages and the
G2S protocol messages. The Business Logic Layer may fur-
ther be comprised of the Download and Configuration logic
libraries, the Executive Service, and the Scheduler Service
which are responsible for implementing the Business Logic
of'the system.

The Data Access Layer Tier may be comprised of Web
Services which may be used to enable methods and/or pro-
cesses for interacting with the Data Tier.

The Data Tier may comprise Download, Configuration,
Schedule, Activity, and Core databases and may be utilized
for storing Download and Configuration system data.

The EGM Tier may comprise EGMs 213 and other config-
urable components like iViews and Game Controllers.

Referring to FIG. 2C-D, a representative embodiment of a
Download and Configuration server network 201 is shown.
The Download and Configuration server network 201 is a
portion of the Slot Management System 101 which provides
a suite of subsystems designed to provide customizable solu-
tions by allowing users to select products within the suite to
meet their needs for particular facilities, such as a casino
manager, seeking to manage a single or multiple properties.
Download and Configuration are two of the subsystems
offered in the suite that provides a user, such as the Slot
Operations staff, an efficient mechanism to remotely config-
ure the electronic gaming machine (EGM).

The Download and Configuration software utilized
together with the apparatuses as shown in the figures, may be
used to enable a casino Slot Operations staff to schedule and
change a game(s) on the casino floor from a keyboard.

US 9,135,778 B2

9

Using the Control Panel (BCP) interface, the staff may be
able to schedule, configure, download and activate changes to
games on the floor, without touching an EGM on the floor.
The Download and Configuration software application may
be loaded on control station 203 to enable the sending of
information over the casino network using G2S’ & HTTPS’
standardized message protocols that manage the downloaded
content. From control station 203, a user, such as the casino
staff, can change the cabinet or game options, or games in
EGMs. There are numerous selections that the staff can
schedule to configure or make a minor change. Some
examples of the types of software that may be downloaded or
options which may be re-configured are:

Cabinet Options ~ Game Options Download Options
Sound Game/Theme Change a game, theme &/or paytable
Reel spin speed Paytable Change the game operating system

Background color Denomination
Attract mode

In order to implement the Download and Configuration
features, one approach is to install the Slot Management
System 101 at a facility, such as the XYZ_Live slot manage-
ment system. The implementation of the Download and Con-
figuration features further contemplates the implementation
of server hardware and related equipment as shown in the
figures, and particularly FIG. 2A-E, including software to
perform the needed functions for communicating relevant
data and instructions, the implementation of download ready
EGMs, such as EGMs with an Alpha operating system with
remote Download and Configuration capability. An example
system for implementing the Download and Configuration
network 201 may be an XYZ One System together with the
XYZ Live Floor program. Another example implementation
of'the Download and Configuration server network may be in
conjunction with other slot management systems incorporat-
ing the XYZ Live Core program.

An example process for using the Download and Configu-
ration server network is as follows: a casino operator decides
to change game themes on the Alpha V20D-20 EGMs. The
software game themes are located on the SDDP server. The
Download management tools are located on the Application/
Database Server System. One or more servers separate from
the SDDP server contain the game theme software, such as for
security or redundancy purposes. The Alpha EGMs are iden-
tified on the casino floor using the BCP. A Download man-
agement tool, such as the BCP scheduler may be used through
a menu to identify: the date and time to download the game
packages; the game packages to send to the specific EGMs;
and the date and time to automatically activate the games on
the EGMs after the download. At the selected date and time,
the EGM may open communication with the Download Data-
base. The EGM requests software from the SDDP server.

The SDDP server downloads the specified game informa-
tion to the EGM using https transmission protocol. The down-
load to the EGM may occur in the background operation of
the Alpha OS, so that gameplay is not interfered with. The

15

20

30

35

40

45

50

55

10

EGM may de-activate game operation in a pre-determined
amount of time subsequent to the last play on the EGM, such
as five minutes, and issue a message on one of its display
panels that it is temporarily offline, at which point the EGM
can initiate installation of the downloaded software. A record
of'the transmissions and corresponding activity of the EGM is
relayed to a retrievable storage on the network, such that a
privileged user may operate the BCP to run the reports iden-
tifying the old and new games, date changed, and by whom.
User privileges may be restricted as discussed previously to
provide additional levels of security and flexibility within the
system and for the casino operator or users of the Slot Man-
agement System 101 and Download and Configuration server
network 201.

Example Download and Configuration components that
are shown in FIGS. 2D and E indicate a system that supports
up to 10 EGMs through a single Cisco 2950 switch. As the
number of EGMs increase, the type and/or number of servers,
switches, firewalls, and pipelines may be changed to accom-
modate higher traffic volumes and improve or avoid degra-
dation of performance. In an example embodiment, the fol-
lowing apparatuses and software are incorporated:

SDDP Server

Download Software Library:

Game server software

Download game software

Application/Database Server

Core Databases:

Core

Meter

Activity

Core Services:

Communication Online

Meter

Activity

Cabinet

Game Play

Download Services:

Web Service

Configuration Web Service

Scheduler Web Service

Download Handler Web Service

Option configuration Handler Web Service

Scheduler

Panel Control (BPC)

G28S:

Certificate, IIS, MSMQ, DNS, DHCP, Active Directory

SQL Report, Web Service, Delivery Agent

Download and Configuration Databases:

Download

Configuration

Scheduler

ASA (Adaptive Security Appliance):

Creates a firewall between back-end and floor systems

Provides proactive threat defense that stops attacks before

they spread through the network, controls network activ-
ity and application traffic, and delivers flexible VPN
connectivity.

Example Components

Example Hardware Example Software

SDDP Server (SDDP may be
placed on its own server to

comply with some

Pentium IV 2 GB RAM 100 GB OS - Microsoft Windows
SATA 2 NIC cards 2003 Microsoft SQL 2005

jurisdiction requirements.)

US 9,135,778 B2

11

-continued

12

Example Components Example Hardware

Example Software

Application Library Pentium IV 2 GB RAM 100 GB

Server SATA 2 NIC cards

Databases: Pentium IV 2 GB RAM 100 GB
Scheduler SATA 2 NIC cards

Download

Configuration

Networking Cisco 2950 Switch, 24 - port

Cisco ASA 5510 (firewall)
CAT-5 cables 15 feet long
2 cables per EGM

Connecting wiring between
devices

OS - Microsoft Windows
2003 Microsoft SQL 2005
OS - Microsoft Windows
2003 Microsoft SQL 2005

Referring to FIG. 3, an example block diagram of a BOB
protocol communication engine is shown. The BOB protocol
for communication is an example of one of the types of
communication protocols that may be used. Another example
is the G2S protocol. (Both protocols are hereby incorporated
by reference and are published by GSA). In this block dia-
gram, the data flow is illustrated as a bidirectional path
through the various components of the BOB Engine. The
BOB Engine is defined as the complete interface between the
EGM and the logical communication channel, but does not
include the communication channel drivers. Persistent
memory is only available outside of the “Grand Transport”
block. The BOB control logic provides all the BOB command
generation and processing. This logic is highly reusable for
different manufacturers; however, some customization of a
BOB BSP (board support package) may be required depend-
ing upon the slot management system with which the EGM is
connected. The BOB Control logic contains the EGM BOB
classes. The EGM BOB classes manage their associated
transaction logs in persistent memory, and the interaction
between the EGM BOB class and the grand transport pro-
vides the necessary events for commit, rollback, and/or
recovery of complete transactions.

Referring to FIG. 3B, an example block diagram of EGM
BOB classes is shown. In this diagram only the “core” EGM
BOB classes are identified along with the general BOB Con-
trol logic. This is a simplified diagram. It may be appreciated
that the actual implementation may include various EGM
BOB classes including multiple instances of the same device.
The components to the left are essentially interfaces to the
BOB BSP for the EGM BOB classes, EGM Optioning data,
and EGM Control logic. The EGM BOB classes may send
and receive fully formed XML commands to and from the
Command Router as indicated by the arrows on the right side
(purple) of FIG. 3B. The EGM BOB classes may be respon-
sible for class specific content XML formatting. The EGM
BOB classes may send fully formed XML BOB command
content to the Command Router. This may be analogous to
marshalling the specific content. Similarly inbound com-
mands may be fully formed XML BOB commands, which the
EGM BOB classes may be capable of ripping down to usable
data structures, analogous to de-marshalling the specific con-
tent.

The device Class has a special relationship with the Com-
mand Router, as indicated by the communication flow lines
(orange) connecting the device Class, Subscription List, and
Communication States components with the BOB Mgr, Com-
mand Router, and externally. These devices are unique in that
they have information to control the Command Router. The
communication Class has a special relationship with the mes-
sage processor, as indicated by the orange line in the diagram
above. These devices are unique in that they may control the
message processor’s Keep Alive period, as well as respond to

15

20

25

30

35

40

45

50

55

60

65

changes in communication status. Logic internal to BOB
Control may instantiate the EGM BOB classes, which will be
registered with the Command Router. Additionally, the
default owner host references may be presented to the com-
mand router via the EGM BOB device Class. Each instance of
an EGM BOB class may be aware of who its owner host is.
This may enable the EGM BOB classes in determining if a
control command should be processed (a control command is
any command that only the owner has permission to request).
Logic internal to the BOB Mgr may initialize the EGM BOB
device Class and subscribe each registered host as an owner to
one of the device Class instances. Similar activity may occur
with the EGM BOB communication Class and meters Class
instances. The BSP interface may be provided to every mod-
ule within the BOB Engine, including the BOB Control mod-
ule. The BSP may be utilized for the Grand Transport to
access EGM services.

Referring to FIG. 3C, an example block diagram of a BOB
command router is shown. In this diagram, some of the “core”
EGM BOB classes are identified. This is only a simplified
diagram. An actual implementation may include various
EGM BOB classes within the BOB Control block including
multiple instances of the same device. The BOB Control logic
EGM BOB classes may send complete BOB commands to
the command router. Similarly, the message processors may
send BOB commands to the router. The communication sta-
tus information may bypass the router and be delivered
directly to the BOB Control logic. The command router may
use the device-to-host subscription lists to direct the outbound
commands to the appropriate message processor. Similarly,
the command Router may use the device registration lists to
route the inbound command to the appropriate command in
Queue.

The router may or may not have control over the subscrip-
tions or registrations. The router may use them to direct the
commands to the appropriate destination. The command in
Queues may register multiple EGM BOB classes if the BOB
Control logic is so designed. If so, the BOB Control logic may
be customized with respect to Queue’s and inbound message
notification logic. It may be desirable for some EGMs to be
able to configure a single command in Queues; in other cases,
it may be desirable for some EGMs to be able to configure
multiple command in Queues with one for each EGM BOB
class instance, for example; and, in other cases, it may be
desirable for some EGMs to be able to configure some com-
bination of commands in Queues. Each case can be custom-
ized within a single network of EGMs. The router logic may
or may not make logical (or rule-based) assumptions about
Owner or Guest hosts when directing inbound commands.
The router may pass on a host ID (Identification) to the EGM
BOB classes so they can determine if action is required and
whom to respond to.

US 9,135,778 B2

13

Referring to FIG. 3D, an example block diagram of a BOB
message processor is shown. There may be a message pro-
cessor for each host connection. By using separate message
processors, a slow host may avoid bogging down communi-
cation with other hosts. The message processor may be
responsible for: (1) combining outbound commands into
messages, and proving the BOB message header; (2) process-
ing message acknowledgments; (3) managing message
retries; (4) splitting inbound messages into commands, pass-
ing the commands to the Command Router, and acknowledg-
ing the message; and (5) managing the timeout for the keep
alive. For example, when a timeout occurs, a communication
status event may be sent to the appropriate communications
Class so that a keep Alive command can be generated.

The message processor may be aware of the communica-
tion status for each host, so the message processor may be
used as a source of communication of status information. The
message processor host queues may hold each outbound
command until the message that contains the command is
acknowledged. Once acknowledged, the command can be
removed from the queue. The message processor may split
inbound messages into commands and provide each com-
mand to the Command Router before acknowledging the
inbound message.

Referring to FIG. 3E, an example block diagram of a BOB
transport is shown. The transport layer may be viewed as a
black-box to the outside world. No implicit knowledge of
how it does what it does may be required by the message
processor or communication channel drivers. There may not
be any persistent memory available to the transport layer; in
which case, persistence may be handled by the EGM BOB
classes through the message processor and Command Router.
Communication status information may be passed to the
EGM BOB classes through the message processor and Com-
mand Router.

Referring to FIG. 4 and 4B, an example symbolic architec-
ture of a configuration management system within a gaming
machine operating system (EGM OS) is shown, such as for
example the XYZ Alpha OS. Various conventional commu-
nications protocols may be used within the Alpha OS com-
munication; communications to external devices may use
standardized protocols, such as BOB or G2S. Within the
context of this description, the term Server and Client refers to
the IPC Server/Client interface within the EGM OS environ-
ment. Example features that may be integrated with the EGM
OS include: the Dynamic uploading of Templates and con-
figuration to a host; and the Tokenized rule checker of Con-
figuration options.

With reference to FIGS. 4 and 4B, IPC connections are
established to and from the Configuration Manager. The Con-
figuration Manager may be an IPC server to multiple Con-
figuration clients, as well as multiple Host Interpreters.
Embodiments may use one or more Host Interpreters inter-
preting for the BOB protocol.

Some example OS Configuration Options may include:

Game Speed

Minimum Reel Spin Time
Maximum Reel Spin Time
Card Deal Rate

Sound Levels

Attract Volume
Reel Spin Volume
Bonus Sound Volume

Slide Bar - Multiple Choice
Slide Bar - Multiple Choice
Slide Bar - Multiple Choice

Slide Bar - 0 to 100
Slide Bar - 0 to 100
Slide Bar - 0 to 100

15

20

25

30

35

40

45

55

60

65

-continued
Button Deck
Autoplay Enable Boolean

Button Deck Selection
Game Pay Table Slots

DropDown - Multiple choice

Game/Pay Table
Denomination
Number of Lines
Mazx Bet Per Line

DropDown - Multiple choice
DropDown - Multiple choice
Range Limited Integer Value
Range Limited Integer Value

An example EGM Operating System Design may include
the following:

Configuration Server

The Configuration Server may run as a component of
Game Manager with IPC connections to both clients and host
interpreters. Clients may be users that may register configu-
ration options and receive call backs when those options
change. Host Interpreters may be users that may register for
configuration error and change notifications, and pass the
configuration information between the gaming terminal and
an external configuration service, and visa versa.

The Configuration Server may act as a central point for a
configuration management system. This server may not have
specific knowledge of any specific options, but may handle
each configuration option dynamically as it is registered and
used. The Configuration Server may be responsible for the
configuration client registering for a configuration and
responding to a configuration change.

Inan embodiment where the Configuration Server operates
as a separate executable within the EGM OS; all other
executables may have equal functionality and capabilities of
remote configuration. The Configuration Server may be able
to simultaneously maintain connections with multiple con-
figuration clients and multiple configuration host interpreters.

Configuration Client

Configuration Client objects function to provide a useful
interface to the configuration service. The methods given may
not be direct IPC calls, in which case, they may be tools that
use IPC calls to communicate with the configuration service.
Various such methods may accept vectors of configuration
objects to reduce calls and simplify interface, as it may be
anticipated that various Configuration Clients may have mul-
tiple options to manage.

Configuration objects may be created at any time, but it
may be preferable that configuration objects be registered
before the “Game Complete” event. This may provide host
interpreters with a consistent point of completeness and pro-
vide a more consistent interface with the given host system.

Managing Configuration Options with the Same Name

Multiple modules may have configuration options that
have the same name. An example of this is volume. The Game
may have several “Volumes” and the EGM OS may have its
own volume. To manage this problem, a simple name to value
pair is not sufficient, because the management server needs to
be able to distinguish between the different volumes.

One technique is for each configuration option name to
include the path of the configuration file that it was created
from. This may reduce the restriction on option names to be
unique per configuration file, while allowing multiple “vol-
umes” across the system. This configuration path name may
need to be overridden in some specific cases, in which case an
IPC call may be supported to do so if and when it is needed.
With the path now part of the name, the configuration options
when presented to a GUI (user interface, such as a work
station connected to the EGM remotely through the casino or

US 9,135,778 B2

15

slot management system) can be displayed as “Volume” but
in the background can now be managed as, for example
“cfg/OSSound/Volume™ and “game/theme/volume”, keeping
them separate and accurate.

Client Methods

The Virtual Bool AppendChanges(const ConfigurationEr-
ror &append, unsigned int transactionld) appends additional
option changes to the change request at the time of the test,
invalidates and closes the current testing transaction, and
opens a new transaction with the specified append changes. It
should be noted that this method does nothing if'the option or
options are already in the change or test list. This method is
only able to append in a test handler.

The @param append provides the list of options to append
to the test.

The @param transactionld provides the ID of the transac-
tion.

The @return Bool returns true on success and false if not in
test, or the options are already in test.

The RegisterConfigurationChangeHandler (Configura-
tionChangeHandler handler) may register the given function
pointer as the handler function for changes to configuration
options registered for by the same client Object. This method
may be called with a non-null value before other configura-
tion options are valid.

The RegisterConfigurationOption (vector<Configuration
Option>options) may register a vector of configuration
options. This function will only work if the configuration
change handler has already been registered for.

The UnRegisterConfigurationOption
(vector<ConfigurationOption>options) may un-register a
vector of configuration Options. The configuration service
may match the client ID and configuration name when un-

registering a configuration option, all other parameters are
ignored.
The UpdateConfigurationOption

(vector<ConfigurationOption>options) may re-register a
vector of configuration option. The new options may be
matched by client ID and configuration name, and the new
options will replace the previously registered options. The
entire operation may fail if any of the configuration options
are not found.

The RegisterForChanges(vector<std::string>&options)
may register options for changes. When options of the given
names change, the configuration changed handler may be
called. In one embodiment, this method may also register
these options for test. In another embodiment, registering
options fortest may be done separately. For example, see next
method.

The RegisterForTest(vector<std::string>& options) may
register options for test. When options of the given names are
about to change, the test handler callback will be called.

The PostConfigurationError(SimpleConfigOption&
option, string error) may log an error of string error, referenc-
ing SimpleConfigOption option. This error may be added to
the current error log, and host interpreters may be notified.

The RegisterTestCompleteHandler(TestResultHandler &
handler) may register a call back handler for configuration
change tests.

The TestOptions(vector<SimpleConfigOption>&option)
may test a configuration value change. The configuration
service may use the given value and re-evaluate the rules of
configuration options registered for by the calling client. The
registered TestConfigChange Handler may then be called
with the error log of configuration options registered by the
calling client. ConfigurationOptions that the client did not

10

15

20

25

30

35

40

45

50

55

60

65

16

register for may not be evaluated. This may prevent errors in
other configurations from halting all configuration changes.

The SetOptions(vector<SimpleConfigOption>&options)
sets the value of configuration options, without risk of modi-
fying any of the other configuration object parameters. Set-
OptionValue may trigger a change handler call if the new
value is invalid and has to be changed back to the previous
value.

Client Configuration Handlers

The ConfigurationChangeHandler(vector<Simple
ConfigOption>&options) is called when a configuration
change has occurred. When a client receives this call, all of
the options that changed in the same set call by a host inter-
preter will be contained within the vector.

The TestResultHandler(Bool
vector<pair<SimpleConfigOption,
vector<strings>>&errors) is called after a TestSetOptionVa-
Iue. The Boolean will represent the validity of the new value.
The pair consists of a Configuration Option, and the errors it
generated, the topmost vector will be the same size as the
vector in the request, and each configuration option from the
request will be present. The vector of strings will be size 0 for
configuration options that did not error.

Configuration Host Interpreter

The configuration host protocol may not be confined to a
single protocol. This may enable the configuration service to
work in more environments, and not require additional host
resources in many cases. To accomplish this, a generic Host
Interpreter API may be defined. This may enable host proto-
col implementations within game manager to translate (or
interpret) the configuration interface to match the needs of
most protocols. Since configuration options may be con-
trolled by the client object that registered them, the Host
interpreter may be able to affect the value of an option but not
be able to change other parameters including the allowed list,
and the rule sets.

The Configuration Template

One of the requirements of configuration is to be able to
upload a Configuration Template to the host system. A Con-
figuration Template is a dynamic list of Configuration
Options. The Configuration Server will populate this list
sorted by category and subcategory. When a XML dump of
the configuration options is needed, the host interpreter will
concatenate the XML dump of each option into a single
buffer. Example Host Interpreter Methods may include: (1)
GetConfiguration(vector<ConfigurationOption>&options);
and (2) Retrieves all options, sorted by category and sub

valid,

category.
The GetTestTemplate (vector<Configuration
Option>&options) retrieves the test template. The test tem-

plate is to assist compatibility testing for configuration serv-
ers. The template attempts to test all of the control types, and
heavily test the rule evaluator. The host can then make a
determination of the compatibility of the server side GUI
support and rule evaluator. Every control type should be sup-
ported by the GUI with the given parameters and values, and
every rule should resolve as true and without error.

The RegisterConfigurationErrorHandler(ConfigEr-
rorHandler &handler) registers a function to be called when a
configuration error occurs.

The RegisterTestCompleteHandler(TestResultHandler &
handler) registers a function to be called when configuration
tests have been completed.

The RegisterConfigurationChangeHandler(Config
ChangeHandler &handler) registers a callback to receive
notifications when: (1) The value of an option has changed, or
(2) The parameters of an option have changed.

US 9,135,778 B2

17

When a configuration object has either been added or
removed Validate() a force check all rules should be per-
formed. Replies with Boolean and triggers are called to reg-
istered Error Handler. If the error report is generated due to a
validate call, the first string will read: “Validation of configu-
ration rules failed”

The TestConfiguration(vector<SimpleConfigOption>
options) sends the list of options to the configuration server to
test rules. This call will not cause any change handlers to be
called. If this function returns false, an error report will be
generated.

The SetConfiguration(vector<SimpleConfigOption>
options) sets the configuration values in the vector of options.

An Example Host Interpreter Handlers may include: Con-
figErrorHandler(vector<string>errors). This handler will be
called when new error strings are made available. This func-
tion will NOT be called for errors generated from Test calls,
and the configuration server does not keep a log of these calls.
The order of the strings is the order that they were discovered
by the configuration service, (perhaps based on the order the
configuration server tested configuration rules), but they all
are considered to have occurred at the same time.

The TestResultHandler(Bool valid, vector<pair<Simple
ConfigOption, vector<strings>>errors) is called after a Test-
SetOptionValue. The Boolean will represent the validity of
the new value(s). The pair consists of a ConfigurationOption
and the errors it generated, the topmost vector will be the
same size as the vector in the request, and each configuration
option from the request will be present. The vector of strings
will be size 0 for the configuration options that did not error.

The ConfigChangeHandler(vector<SimpleConfig
Option>&options) is called when configuration values are
changed. All host interpreters will receive change notifica-
tions when any configuration value changes. Unlike Configu-
ration clients, Host interpreters are automatically registered
for all configuration option changes.

The ConfigChangeHandler(vector<Configuration
Option>NewOptions, vector<ConfigurationOption>Remo-
vedOptions, vector<ConfigurationOption>Modified Val-
ueOptions, vector<ConfigurationOption>ModifiedParam-
eterOptions) is called whenever the configuration changes.
All host interpreters are notified via this callback. The Vector
of NewOptions is the new options that have been registered.
The vector or RemovedOptions are the options that have been
unregistered. The vector of ModifiedValueOptions is options
whose value have change. The vector of ModifiedParam-
eterOptions is options with new, removed, or modified
parameters. If both the value and parameter of an option has
changed, it will show up in both the ModifiedValueOptions
vector and the ModifiedParameterOptions vector. Most com-
monly, the ModifiedValueOptions vector will be non-zero
and the reset will be zero sized. This function is not generated
directly from a call to SetConfigurationValues.

In one example method of managing Configuration
Options, configuration options may be grouped in categories.
Groups may be ordered first by their definition of category
parents, and next in the order they are registered. Configura-
tion options may be available as both C++object and as a
XML text representation. A Configuration Template may
include an accumulation of configuration options. Every con-
figuration object may be responsible for defining rules that
will prevent illegal configurations as a way to avoid possible

10

15

20

25

30

35

40

45

50

55

60

65

18

incomplete configurations and non-recoverability in the case,
for example, of one time configurations, interdependencies,
and the like.

Changes may occur singularly, or as a whole. Each con-
figuration request may be treated as a single transaction
regardless of the size or number of options that change. All
rules will be re-evaluated before changes are implemented.
Registered clients will receive their option changes at the
same time to avoid chicken/egg situations. Configuration cli-
ents may have their handlers called in the order that the client
registered with the configuration service.

Configuration Categories

Configuration option names need to be protected from
conflicting from one another. Configuration clients may wish
to implement configuration options with the same simple
name, i.e. “volume”. The solution is to place configuration
names within categories. By using categories, configuration
options can now be uniquely identified.

For example, in a multi-game environment, two games
may wish to have the volume option. But if they are separated
into categories like gamel/ or game2/ then the full option
identification would be unique. “Gamel/volume” or “game2/
volume”. In such instances, the category may be constructed
as a path.

Storing Configuration in NVRAM

Saved in NVRAM will be the category, name, and string
value of every configuration object. The categories will be
stored in a lookup table to save space, and the value will be
stored separately with index references to their category and
names. As an example, an initial space of 50 k of NVRAM
may be allocated in a single block. Configuration data may be
streamed to the block as configuration changes are made.

An NVRAM management algorithm may be used to man-
age the NVRAM structure. If the 50 k is not managed by a
management algorithm or tool, then a change at the beginning
of'the structure in the length of a string can cause the entire 50
k to be re-streamed to NVRAM, causing unacceptable
resource loads. Instead, it is preferable that the data be kept in
an allocation table, so that the data can be dynamically rear-
ranged to reduce NVR AM writes on configuration changes. A
background timer or thread may then be used to defragment
the data over time and to create larger blocks of space for
future configuration changes. If a configuration change is
made that does not fit into NVRAM, then the change will not
occur, and the configuration change will be denied with an
error for insufficient space. In such a case, an NVRAM man-
agement algorithm could be called in order to add additional
space and thereby enable the configuration change. If a
change occurs for which there is sufficient NVRAM space,
but due to defragmentation there are no continuous blocks
large enough to contain the change, then the defragmentation
process will be forcefully completed just enough to allow the
change to take place. The forced defragmentation will only
defragment the entire 50 k of space ifit is absolutely required.
The goal is to complete the write with as little NVRAM
access as possible.

Configuration rules are intended to allow the configuration
manager and the host system to pre-check all configuration
requests and make accurate predictions regarding whether
configuration is possible and valid. The host system will be
able to also use the Rules System to provide immediate feed-
back to a GUI user if the configuration that is being created is
valid. The Rules System is not the last stand against illegal or
bad configurations, but it may be used to cover the majority of
cases. Additional coded checks within the gaming machine
will be made to ensure that an error in a configuration rule
does not allow illegal configuration. For every rule, the final

US 9,135,778 B2

19

result must be true, or the option will be considered invalid.
Multiple rules can be applied to any Option. It is better to have
multiple rules than a single large rule consisting of a series of
ands. This will allow error reporting to be much more spe-
cific. Rules may be similar to C style expressions, and can
reference other options by their name. To refer to another
option by name, the [OptionName:defaultValue| operator
may beused. The OptionName is the name of the option being
referred to, and the defaultValue is the value that is returned if
OptionName is not found.

Example KeyWords may include the following:

[THISVALUE] refers to the option being tested in the rule.
For example, [THISVALUE]>=[OptionName:O] will ensure
that the option being tested is greater than the option referred
to by OptionName, or 0 of OptionName is not found.

[FAULT text] will cause a FAULT with the given text. For
example, [OptionName:[FAULT text]] will FAULT if
OptionName is not found. The text parameter will be dis-
played in the FAULT. This feature is intended to test compat-
ibility up front, hopefully only to occur within a development
environment. It is not recommended to test the existence of
options from another process, as this can cause significant
backward compatibility problems.

In one embodiment, # may be the error statement keyword.
Any text following this symbol will be displayed as the error
message if this rule fails.

In another example, there may be two possible rules for
Printer Limit.

1—([THISVALUE]>=[BaseDenomination: [FAULT

BaseDenom Not Found]]) # Printer limit must be greater

than Base Denomination; and
2—(([THISVALUE]<=Dackpotumit:01)||JackpotLimit:

0]==0)) # Printer Limit must be less than Jackpot Limit.

These rules may ensure that the Printer Limit is greater than
the Base Denomination. If the Base Denomination is not
found, then the machine will fault with the text “BaseDenom
Not Found”. If the BaseDenomination is found, but fails
the >=conditional, than the text “Printer limit must be greater
than Base denomination” will be displayed to the operator.

Example Variables, Operator, Constants and Rules:

Constants should always be found within quotes. Both
Numeric and strings follow this rule. For example, “100” or
“XYZ Gaming and Systems” Supported Operators:

Operators with 2 parameters: If either operand is non-
integer, the expression is executed as if both operators are
string. Binary character by character compares stop at the
length of the shortest string. When Boolean options are used
with these operators they are considered to be of value “1” or
“” or “0” (both “ ” and “0” are false).

Two operand Operators:

Addition +

Integers:

Returns the sum of both operators.

Example: “17+“1”

Return Value: “2”

Strings:

Returns a string of string1 and string2 concatenated.

Example: “String1”+“2”

Return Value: “String12”

Subtraction —

Integers:

Returns the difference.

Example: “27-“1"

Return Value: “1”

Strings:

Returns string1 with first instance of string2 removed. Also
removes leading spaces, and double spaces that are created.

10

15

20

25

30

35

40

45

50

55

60

65

20

Example: “XYZ Custom XYZ Options”-“XYZ”

Returns: “Custom XYZ Options”

Multiplication *

Integers:

Returns the product.

Example: “27* “4”

Return Value: “8”

Strings:

Results in an error

“(OPTIONNAME)(CONSTANT) expected to be an inte-
ger value”

Division /

Integers:

Returns the quotient

Example: “27/“4”

Return Value: “0.5”

Strings:

Results in an error

“(OPTIONNAME)(CONSTANT) expected to be an inte-
ger value” Modulus %

Integers: Returns the remainder

Example: “47%°3”

Return Value: “1”

Strings:

Results in an error

“(OPTION NAME)(CONSTANT) expected to be an inte-
ger value”

Greater Than >

Integers:

Returns true if integer] is greater than integer2

Example: “27>“1"

Returns: “1”

Strings:

Returns true if string] is alphabetically greater than string

Example: “Cool”>“Awesome”

Returns “1”

Example: “1 00Co0lOnes”>“2Co0lOnes”

Returns “1”

Example: “1Co0lOnes”>*2Co00lOnes”

Returns “0” Less Than <

Integers:

Returns true if interger] is less than integer2

Example: “27<*1”

Returns: “0” Strings:

Returns true if string] is alphabetically less than string 2

Example: “Cool”<“Awesome”

Returns “0”

Example: “1 00Co0lOnes”<“2Co0lOnes”

Returns “0”

Example: “1Co0lOne”<“2Co0lOnes”

Returns “1”

Greater Than or Equal to >=

Equivalent to ((varl>var2)H(varl==var2))

Less than or equal to <=

Equivalent to ((varl<var2)H(varl==var2))

Open Parentheses (

The Start of another operation. These can be nested.

Close Parentheses)

End of an operation

Equal To =

Integer:

Returns true if interger] is equal to integer2

String:

Returns true if stringl is exactly equal to string2 (case
sensitive)

And Compare &&

US 9,135,778 B2

21
Integers:
Returns true if interger1>0 and integer2>0
Strings:

Returns true if Length(string1)>0 and Length(string2)>0

Or Compare ||:

Integers:

Returns true if interger1>0 or integer2>0

Strings:

Returns true if Length(string1)>0 or Length(string2)>0

Binary And &:

Integers:

Returns result of binary and of intergerl with integer2

Example: “6” & “3”

Returns: “7”

Strings:

Results in an error

“(OPTIONNAME)(CONSTANT) expected to be an inte-

ger value”

Binary Or |

Integers:

Returns result of binary or of interger] with integer2

Strings:

Results in an error

“(OPTIONNAME)(CONSTANT) expected to be an inte-

ger value”

Binary Xor”

Integers:

Returns result of binary Xor of integer] with integer2

Strings:

Results in an error

“(OPTIONNAME)(CONSTANT) expected to be an inte-

ger value”

Example Single Operand Operators:

Not !

Integers:

Returns true if integer? is equal to zero.

Strings:

Returns true if length of string 2 is zero.

Parentheses may be required around this operator, and its

operand.

Example Order of Operation:

No order of operation will be supported. Only one operator

per pair of parenthesis allowed.

Example Special Functions:

Length(string)

Returns the number of characters of string.

AllowedBy(string, OptionName)

Returns true if the test value is found in the Allowed By list
of OptionName. Returns false if OptionName is not
found.

GetAllowedValue(integer, OptionName)

Returns the N’th allowed value listed in OptionName. Base
1.

Returns “““ if OptionName is not found.

Valid(OptionName)

Returns false if OptionName is not found, or if any of
OptionName’s rules do not evaluate to true. Valid calls
only stack to one level. If a rule is being evaluated due to
a call to Valid, all Valid calls made by those rules will
return true. This eliminates possibility of endless recur-
sive Valid calls.

Int(integer)

Returns the truncated integer value.

CaseCmp(string], string2)

Equivalent to (string]==string?2)

CaselCmp(string], string2)

Similar to CaseCmp except case insensitive.

10

15

20

25

30

35

40

45

50

55

60

65

22
Concatinate(string1, string2)
Similarto (string]+string2) except that it will not attempt to
resolve to integers.
StringSubtract(stringl, string2)
Similarto (string]-string2) except that it will not attempt to
resolve to integers.
GetHigestFrom[ist(string)
Returns the highest constant from given comma delimited
list.
GetLowestFromList(string)
Returns the lowest constant from given comma delimited
list.
GetListCount(string)
Returns the number of constants found in given comma
delimited list.
IsInList(value, string)
Returns true if value is found in the comma delimited list
string
GetListIndex(integer, string)
Returns the N’th constant in the given comma delimited
list. Returns “““ for out of bounds check.
IsEnabled(string)
Returns true of the option named by string is enabled,
otherwise false.
RegExpression(“string”, “expression”)
Returns the result of applying expression to string.
Example: To check the format of a string:
Given [THISVALUE] needs to look like
“L1_Blazing7s_SABC”.
To check that the format of this string is an L, followed by
a single digit number, followed by an underscore, followed by
the ThemelD, followed by an underscore, followed by a string
of capitalized characters, use the following RegExpression
Call:
[THISVALUE]=
RegExpression([THISVALUE], “L[1-90]_"+
([ThemelD:]+“_[A-Z][Z-A]*"))
Example: To check if a Regular Expression is found within
a string
Given [THISVALUE] needs to contain a lowercase letter
followed by a number
To check that string contains a lower case letter followed by
a numeral digit:
Length(RegExpression(| THISVALUE], “la-z]
[1-901))>0
If Length of the return value from RegExpression is non-
zero than the expression was found. RegExpression
would have returned a zero length string if it was not.
Referring now to the ConfigurationOption Object, within
the development environment, an Option can be viewed at
any time as a C++ Object, or as a XML text buffer. The
configuration Object may be handled within the context of a
standard template library vector. Configuration Hosts and the
configuration manager may view configuration options in
their whole form, while configuration clients may handle
configuration options by their name and value.
Creating an Option Object
An object may be created from a file. The CreateFromFile
(vector<Configuration Option>& Options, char * filename)
fills the vector Options with all of the Options defined by
filename. It will also automatically append the path informa-
tion as necessary to ensure that each configuration option has
a unique name. Alternatively, the Option can be constructed
run time, by declaring an Option and filling each parameter.
The Caller will then be responsible for ensuring that configu-
ration option names are guaranteed unique. The configuration
object may preferably be validated before using.

US 9,135,778 B2

23

Example Components of an Option may include:

Category

The Name of the Category that this object will reside in.

Name

The Name of the Option.

Value

The Value of the Option. The creator of the Option is

responsible for filling this with the “default” value.

Type

The type of the option Value. The supported types are:

double, signed long, string, and Boolean.

Minimum

Optional, the minimum value of Value.

Maximum

Optional, the maximum value of Value.

Allowed Values

Optional, if provided, Value must be equal to a value sup-

plied in the allowed value list.

Allowed Value Rules

Optional, for each allowed value, this rule will check if the

allowed value will be present.

Control Type

Type of control object to display in GUI to the operator.

Supported Control Types are:

Category: New Category. This will use the Value as the
name of the new category. The only other member variables
that will affect this option on the GUI end is the Visible flag.
Value and AllowedValues and Rules are still available when
evaluating Rules.

Single Line Edit Box: Simplest of Control Type. This is a
text box that will accept a single line of text.

Multi-Line Edit Box: This is a text box that will allow for
new lines.

Slider: This is a drag-able slider bar. To use, provide a min
and max. Also supports allowed value list.

CheckBox: Used for Boolean options. May be checked or
un-checked by operator.

CheckBoxArray: Used for comma delimited lists with
allowed value sets. Each selected checkbox will add a comma
delimited string to the Value.

ListBox: Displays Allowed Values to be chosen from by
Operator.

ComboBox: Displays Allowed Values list but allows
Operator to enter a custom single line of text.

RadioButton: Will list Allowed Values as Radio Button
options, and the Operator will be allowed to select one.

Rules: Expressions that must resolve to true or non-zero
length string for Value to be considered valid.

ReadOnly: Boolean signifying if this is a modifiable
option. It is preferable if the ReadOnly flag be set once to
prevent confusion or conflicts when copying one machine’s
configuration to another.

OneTimeSettable: Boolean signifying if this option can
only be set once per RAM clear.

IsSet: Boolean signifying if this option has been set at least
once since RAM clear.

ReadOnlyWithCredits: Read Only With Credits signifies
that this Option can only be modified while there are no
credits on the machine.

Visible: Boolean signifies if this option can/will be dis-
played to the operator.

RestrictToAllowedValues: Boolean signifies that the Value
must be on the allowed value list. When this flag is not set,
Allowed Values are used more as “suggested” values. May
not use this option in combination with Control Type Combo
Box.

10

15

20

25

30

35

40

45

50

55

60

65

24

Unique PerMachine: Flag that signifies the option is part of
the identity of a gaming machine, and should not be copied to
another machine. No 2 machines should have the same value.

CommaDelimitedList: Flag that signifies if this option is
intended to be a list of values. Comma delimited lists are
intended to have the format “(value)”,“(value2)”,“(value3)”.

Enabled: This flag signifies if this option is “Enabled”.
Enabled means that a change in the option can have an affect,
while not “Enabled,” means that this option value is ignored.
For example, in lowa, there is no printer limit. Accordingly,
the printer limit is “Disabled.” The printer limit can be given
a value, but it will have no effect on the operation of the
machine.

If Enabled is not present in the definition of an option, it is
assumed to be true. Enabled’s primary purpose is for the use
in Rules. A rule may check the enabled state of itself, and
either require that the value is some fixed number, or allow
any value, since it has no effect for example. Rules may also
check the enabled state of other rules. For the lowa example,
the tax limit may normally check to ensure that it is greater
than printer limit, if the printer limit is enabled, otherwise,
ignore the rule. The same rule would then work for jurisdic-
tions that have a printer limit and for jurisdictions that do not.

Enabled should not be used for a dynamic state of enable.
Instead this is used as a constant state, part of the template,
and should not change in the life of a machine when possible.
If a dynamic enable is needed, then another Boolean option
should be created, and that other option can contain the
enabled state needed.

MemberMethods

Set Methods

SetCategory(string)

Set the Name of the Category where this option will be
found.

SetName(string)

Set the Name of this Category

SetValue(. ..)

Set the value of this Category. Multiple parameter types
will be supported, including but not limited to: Boolean,
string, int, double, float, long, unsigned. Comma delim-
ited lists can be created using SetValue and a parameter
of type: vector<type>

SetType(enum)

Set the type of this Option.

SetMininum(. . ., Bool enabled)

Enable or Disable the Minimum with given value. All
non-vector types of SetValue() will be supported in this
function.

SetMaximum

Enable or Disable the Maximum with given value. All
non-vector types of SetValue() will be supported in this
function.

SetControl Type(enum)

Set the Control Type.

SetReadOnly(Bool)

Set the Read Only flag

SetOneTimeSettable(Bool)

Set the One Time Settable flag

SetlsSet(Bool)

Set the Is Set flag

SetReadOnly WithCredits(Bool)

Set the Read Only with Credits flag

SetVisible(boot)

Set the Visible flag

SetRestrictToAllowedValues(boot)

Set the Restrict To Allowed Values flag

Example Add Methods:

US 9,135,778 B2

25

AddAllowedValue (vector<string>)

Adds an Allowed Value and its rules. The first element in
the vector is the Allowed value, all subsequent elements
are rules.

AddRule(string)

Adds a Rule to the Option.

Example Remove Methods:

RemoveRule(string)

Removes any rule of matching string.

Remove Rules()

Removes all rules

RemoveAllowedValue(string)

Removes any allowed value of matching string

RemoveAllowedValueRule(string AllowedValue, string

rule)

Removes any Allowed value rule of matching Allowed-
Value and matching rule string.

RemoveAllowedValues()

Removes all Allowed values

RemoveMinMaxValues()

Removes the Minimum and Maximum Values.

Example Get Methods:

GetCategory

Returns the Category String

GetName

Returns the Name String

GetValue(type)

Returns the Value in form of type.

Getlype

Returns the Type enum.

GetMinimum(type)

Returns the Minimum in form of type.

GetMaximum(type)

Returns the Maximum value in form of type.

GetControl Type

Returns the Control Type enum

GetReadOnly

Returns the Read Only Boolean flag

GetOneTimeSettable

Returns the One Time Settable Boolean flag

GetlsSet

Returns the Is Set Boolean flag

GetReadOnlyWithCredits

Returns the Read Only With Credits Boolean flag

GetVisible

Returns the Visible Boolean flag

GetRestrictToAllowedValues

Returns the Restrict To Allowed Values Boolean flag

GetXML()

Returns the XML String representing the entire configura-
tion option

GetAllowedValues

Returns the vector of allowed value vectors

GetRules

Returns the vector of rules

SimpleConfigOption

Components of a SimpleConfigOption

Namespace

A string containing the namespace of a configuration
option.

The namespace always ends in °/° so that it can be concat-
enated with the name for NVRAM storage and handling.

Name

A string containing the name of a configuration option.
When concatenated with the name space the sum string
will be unique in the configuration system.

10

15

20

25

30

35

40

50

55

60

65

26

Value

A string containing the value of the option. The string can
be converted to other data types for use, but will be
stored as a string.

Example Member Methods:

GetName

GetFullName

GetNamespace

GetValue(type)

Returns the Value in form of type.

SetValue()

Set the value of this Category. Multiple parameter types
will be supported, including but not limited to: Boolean,
string, int, double, float, long, unsigned.

Comma delimited lists can be created using SetValue and a

parameter of type: vector<type>

Referring to FIG. 5-7, example flow diagrams for gaming
machine operating system configuration initialization and
operator menu configuration change and save are shown.

Referring to FIG. 8, an example sequence diagram for a
gaming machine OS configuration operation is shown.

Referring to FIG. 9, an example flow diagram of a Super-
Config (super configuration) operation is shown. SuperCon-
fig provides an option to reconfigure EGMs.

Game Manager Modules

Game Manager Modules may be converted to use Super-
Config for configuration data storage.

Video Interface

The video server and interface used by operator menus at
the slot or casino management system level. This interface
allows the menu display code to create a user friendly pre-
sentation of configuration options, settings and other infor-
mation.

BoB Configuration Class

By example, user interface menus display SuperConfig as
an option which may automatically be sent in the form of an
instruction to the BOB Host through this module. Referring to
FIG. 9, BOB Config Class uses the Super Config interface as
well allowing re-use of code for host configurability.

Configuration Management Module

Control and verification of configuration options are now
the responsibility of this object. All rules, restrictions and
checks currently made by the Operator Menu code will be
made by this object. This object is independent of options
being changed via the operator menu or via the host config-
urability. Another responsibility of the Configuration Man-
agement Module is to interface with the existing Game Man-
ager Modules. As configuration values change the
Configuration Management Module will ensure that those
changes take effect within Game Manager.

Options Config File

Options may be templated in xml based configuration files.
These files define the basics for options, and any of their static
data such as min/max, allowed values, and option help. These
options will be loaded, the dynamic components initialized
(default value, jurisdiction min/max, and the like) and regis-
tered by the Configuration Management Module.

Referring to FIG. 10, two example sequence diagrams are
shown. The first sequence diagram is a configuration man-
agement object on power up. This is where configuration
options get created and registered. The second sequence dia-
gram shows an error free sequence of events when an operator
at a workstation, such as the control station using the BCP
application, uses a menu that has been converted to use Super-
Config.

US 9,135,778 B2

27

Referring to FIG. 11, an example data flow diagram is
shown of data and instruction exchange between the modules
during a SuperConfig operation.

Architecturally, the SuperConfig operation as shown in
FIG. 11 shows a separation between the display of informa-
tion to an operator at a remote workstation, such as the Con-
trol Station with the BCP application, and the control of the
information which is used and/or re-used by host driven con-
figurations. The SuperConfig interface may be IPC compat-
ible, which eliminates a need for the remote operator menu to
be tied to the same process as the SuperConfig manager.

The SuperConfig manager may be entirely integrated into
the Game Manager Modules. If the Super Config is fully
integrated into Game Manager, the Game Manager Modules
will not need to keep its own NVRAM copy of configuration
data.

An example is the Denom Mgr (Denomination Manager).
Denom Mgr may have its own internal storage of active and
available denominations; however, the information stored by
Denom Mgr is duplicated in Super Config. By modifying the
Denom Mgr to be integrated with the SuperConfig Mgr, the
redundant NVRAM storage space may be eliminated.

Thus, in one embodiment, the SuperConfig Mgr stores all
configuration data converted to SuperConfig, and most of the
same data is stored within Game Manager Modules. In
another embodiment, the SuperConfig Mgr is integrated with
the Game Manager Modules and redundant storage, persis-
tence, and communications are eliminated or significantly
reduced.

The following provides an example of Error detection and
recovery: Power hit recovery of configuration changes may
be handled by the SuperConfig Mgr and Config Mgmt (Con-
guration Management). The SuperConfig module may ensure
all or nothing configuration saves and changes. The Configu-
ration Management object may be responsible for recovering
this data and synchronizing the related Game Manager Mod-
ules to match. The following provides an example of EGM
Operating System Design:

Configuration Management Module

The Configuration Management Modules are managed by
a class called ConfigCenter. ConfigCenter manages the cre-
ation, initialization, and recovery of each module. Once cre-
ated and recovered, ConfigCenter has no tasks other than a
container. To be managed by ConfigCenter, each module
must inherit from ConfigMgmtObj. ConfigMgrntObj is an
abstract class for configuration management modules. As
each module is created and added to the system, it must be
added to ConfigObjectList.cpp. To do this, add the include file
for the module to the top of the file, and add an object decla-
ration to CreateConfigObjso. Each configuration manage-
ment object has four interface functions: RegisterHandlers,
RegisterConfig, TestHandler, and ChangeHandler.

RegisterHandlers

This function will be called when it is time for the module
to register its handlers with SuperConfig. The module should
register a file scope function for TestHander and Change
handler that each then call into the objects member functions
for TestHandler and ChangeHandler. If each module registers
its handlers in this way, then maintenance of modules will be
easier for future developers if needed.

RegisterConfig

This function will be called when it is time to create and
register its configuration options with Super Config. This is
also the function that is responsible for power hit recovery of
changes.

20

30

40

45

55

28

TestHandler

When properly registered by RegisterHandlers function,
this will be called by SuperConfig to test configuration
changes of registered configuration options.

ChangeHandler

When properly registered by the RegisteredHandlers func-
tion, this will be called by SuperConfig to notify the manager
that configuration option values have changed.

Operator Menu Display

In one embodiment, the operator menu may get configu-
ration data directly from Game Manager Modules; in another
embodiment, the operator menu may get configuration data
from SuperConfig. In one embodiment, the operator menu
may save configuration data directly to Game Manager Mod-
ules; in another embodiment, the operator menu may send it
to SuperConfig for saving. In one embodiment, the operator
menu may test and verify configuration changes; in another
embodiment, the operator menu may send the changes to
SuperConfig for SuperConfig to test the changes. SuperCon-
fig may then reply with a TestComplete notification to inform
each operator menu if the changes are acceptable, and if not,
provide the operator human readable reasons why the con-
figuration change is in error. Ideally, the Operator menu does
not need to include any Game Manager module interface
classes.

In one embodiment, the operator menu display is part of or
directly attachable to the EGM and its OS; in another embodi-
ment, the operator menu display is remotely attached to the
EGM and its OS through network connections.

Referring to FIG. 12, a flow diagram for an Operator Menu
functionality is shown.

Data Design Configuration Options

Many options are not simple data types. For these more
complex types, custom type classes may be created and added
to SuperConfigh. An example is CfgEnumType, which is
already defined in SuperConfig.h. One requirement of a Con-
fig option data type may be to support the << and >> stream
operators. To meet this requirement, the value must be accu-
rately recreateable from being streamed out to a character
stream and streamed back in. The Option Data files may
comprise template files for configuration options. The files
may contain a simplified xml format.

The following provides an example of a File Format: Each
configuration option may start with <struct>, and end with
</struct>. Each attribute may be contained in a <field
name="“ value=""/>tag.

Supported tag names may include the following:

Category

The category of the configuration option, used to organize

the options.

Name

The name of the option

Value

The value of the option

Type

The type of the option, supported types:

Boolean, Decimal, Integer, String, or unknown. For cus-

tom types, use String.

Minimum

The Minimum Value

Maximum

The Maximum Value

OptionHelp

Help text presented to remote hosts.

Allowed Value

Allowed value for multiple choice options. If Restrict-

ToAllowedValues is true, then super config will enforce

US 9,135,778 B2

29

that except for the initial value; the value will be forced
to be chosen from an allowed value.

You can list multiple allowed value attributes within a
single configuration option.

Control Type 5

The intended presentation of an option to GUI. With the
exception of Category, this parameter is currently not
used by any existing GUI, but should be defined when
applicable for future use. Control types of Category are
not saved to NVRAM, and their value fields are not used.
Their purpose is to name the category of options.

Example Supported Control Types are:

Category, Single_Line_Edit_Box, Multi_Line_Edit_B1
ox, Slider, CheckBox, CheckBoxArray, ListBox, Com-
boBox, RadioButton, or Unknown.

ReadOnly

Enforced by Super Config, Read Only options can not be
modified once registered.

LocallySettable

Ignored when ReadOnly is true. This attribute defaults true
ifnot present signifies if an option can be modified by the
EGM.

RemotelySettable

Ignored when ReadOnly is true. This attribute defaults
true, if not present, and signifies if an option can be
modified by the Host Configuration.

OneTimeSettable

This attributed is enforced by SuperConfig. OneTimeSet-
table configuration options can only be changed once
after registration.

IsSet

Applicable with OneTimeSettable. Although rarely used in
aconfig file, when IsSet is true, and an option is one time
settable, the option becomes effectively read only.

ReadOnlyWithCredits

Enforced by Super Config, this option can not and will not
be modified if there are credits on the machine.

Visible

Defaulting to true if not present, this option is used to hide
options from user interfaces. Set to false for options that
are for internal use only, or are “helper options™ for
menu implementations.

RestrictToAllowedValues

Used with AllowedValues, and enforced by Super Config,
when true will only allow values listed in AllowedVal-
ues. On initial registration of an option this rule is not
checked.

Unique PerMachine

Although not yet used by any existing Host interface, this
attribute signifies that this option should be unique to
this machine, and other machines should not share the
same value for this option. An example of this would be
the serial number, i.e., no two machines should share the
same serial number. If or when a host supports this

10

15

20

25

30

35

40

45

50

30

feature, it will be able to pre-empt problems caused by
two machines attempting to use the same identification.

Download

In many disclosed embodiments, there is a fundamental
interrelationship between modules and their download pack-
ages. A package can be made up of multiple modules. Mod-
ules are made up of one or more files. Within the context of the
download environment, transfer of modules between the
EGM and the Download Package Server (DPS) are per-
formed via packages. Once a package is installed on an EGM,
the Modules become the focal point, and the package may be
deleted or saved for future use.

Modules are defined as a collection of one or more files.
They will usually provide a basic function or contain a set of
basic information as stored on the EGM. Modules can be as
broad as the game OS, or as restricted as defining a specific
configuration or control file. The design of the module is
meant to be flexible enough to support, however, the user who
wants to control the updating of each individual EGM within
the facility or facilities. The idea of the module is to allow the
user to easily update his system and identify what is installed
on his system and at what level of support. Generally, it is
preferable that each module which contains files that are
stored on the EGM must have a file validation manifest asso-
ciated with them. Each module preferably has one Manifest
file associated with it. Two or more Manifest files preferably
do not contain the same file in them.

In one embodiment, an example of a Module Implementa-
tion Approach is as follows: Modules are installed via a
package. The package may contain one or modules within it.
All modules within the same package will be installed at the
same time. Individual Modules may be deleted separately.
When a module that contains more then one file is deleted, all
the files must be defined within a validation Manifest file.
Only those files that are defined within the manifest will be
deleted. No checks are made for any dependencies that may
exist on a module to be deleted. If one module depends on
files that exist within another module that is to be deleted, it
may fail after the other module is deleted. Each module 1D
must be unique and restricted to 32 characters in length.
Different versions of the same module must have different
module IDs, if they are to exist on the EGM at the same time.
Even if one of the modules is inactive, it must have a unique
ID. As soon as a module is installed, it is marked as active.

Various other module implementation approaches may uti-
lize some of the above-listed examples, may utilize other
types of rules and criteria, or may utilize of combination of
some or all of the above-listed examples and additional rules
and criteria as well.

An Example Data Design

The elements of the module context as stored on the EGM

are as follows:

Element

Description

modID
Release
description
type

state

exception

Unique identifier for the module. How the module is addressed within the
EGM and by G2S commands and requests.

A 32-character string to identify the release information for the module.
This may include release number, version, build number, and the like..

A 64-character description of the module.

Identifies the type of module it is. The types include OS, game, firmware,
data, file, configuration, and the like. Refer to the G2 specifications for
details.

The current state of the module. This indicates if the module is active,
inactive or has some error condition associated with it.

This contains the specific error status associated with the module.

US 9,135,778 B2

32

-continued
Element Description
Storage The amount of storage the files associated with the module use.
manifest This is the name of the Manifest file associated with the module. If the

module type is some type of a file, then this will be the name of the file.

The name must include the fully qualified path information.

Referring to FIG. 13, an example flow diagram of a gaming
machine BIOS startup is shown. With the introduction of the
new package download support and file validation support on
the EGM, the BIOS preferably determines which EGM oper-
ating environment needs to be started on the EGM. An EGM
operating environment may contain a Linux kernel, programs
and libraries, and the Game OS programs and libraries. Dif-
ferent EGM operating environments may contain a different
OS kernel, the same Linux OS components but different
Game OS components, or different Linux OS components but
the same Game OS components.

With the addition of the package download and file valida-
tion support, the EGM may have the capability to boot from
one or more operating environments. Also, when a modifica-
tion is made to the EGM’s operating system code, game OS or
game, the last working environment is retained at least tem-
porarily in the event that new updates do not allow the EGM
to work properly.

In one embodiment, the EGM is able to support multiple
bootable operating environments. In an example embodi-
ment, the EGM system is able to switch between 2 Linux OS
and Games OS combinations. In another embodiment, the
EGM system may select a Linux OS, Game OS and Game
separately. In an example embodiment, EGMs with one or
more compact flashes or hard disks installed are supported.

In one embodiment of an EGM System Design, one parti-
tion on any bootable media on an EGM often contains a
number of directories. One of these directories is the “con-
figuration” directory that will contain a file called boot.id. The
boot.id file may be used by the BIOS to determine which
EGM operating environment to start up. The boot.id file may
contain the following fields that BIOS can use to determine
which EGM operating environment to boot: (1) Boot: The ID
of'the environment that BIOS will use to boot the EGM under
normal conditions. (2) Booted: BIOS will store the ID of the
EGM operating environment that it is booting in this field.
When the EGM is successfully started and running, this field
will be zeroed out by the Game environment. If there is an
error while starting the EGM or the EGM is unable to start,
this field will remain non-zero. When the BIOS code gains
control, it checks this field to see if it not zero or null. If it is
zero or Null, BIOS boots the environment specified in the
boot field. If it is not zero, BIOS will boot the environment
specified in the alternate field. (3) Alternate: The alternate
field contains the ID of the alternate EGM operating environ-
ment to start when the operating environment specified in the
boot does not work properly or is unable to start the EGM.

An example logic flow overview of the BIOS boot decision
process is shown in FIG. 13. An example of Data Design is
provided.

boot.id file format

Field Description

Boot Environment BIOS should boot
Booted Environment BIOS just booted
Alternate Alternate environment BIOS may boot

10

15

20

25

30

35

40

45

50

55

60

65

Referring to FIG. 14, an example block diagram of an
EGM OS partitioning is shown. Shown in FIG. 14 is the
payout of the partitions associated with a gaming device.
These partitions may be present for both a hard drive and a
compact flash. The manifest partition may be the first parti-
tion on the compact flash or the hard drive/disk. When a
compact flash is used, the manifest partition may reside on
both the OS and the Game compact flash. The games partition
on the OS compact flash may be logically linked to the mani-
fest game flash partition as can be seen in FIG. 15.

Referring to FIG. 15, a block diagram of an EGM OS
manifest partition together with a game manifest partition is
shown. The configuration directory within the manifest par-
tition contains 2 files. The boot.id file contains the informa-
tion as to which partition was used to start the system, 0S1 or
0S2, and which partition is the backup partition used for
recovery purposes. The second file is the public key file which
is used when the public key information is not available on the
BIOS. The 0S1 and 0S2 partitions contain all the Manifest
files and the Linux kernel and the initial RAM disk partition
image. One of the partitions will be the currently active game
environment, and the other will be a backup in case the active
partition becomes corrupted and can not be run. The boot.id
file mentioned above tells which partition is active and which
is the backup.

Referring to FIG. 16, a block diagram of OS manifest
partitioning and system partitioning are shown. When a
download is performed, all the information is place in the
packages subdirectory of the Download partition. The pack-
age installer process will read the package information from
the download package and place the information in the data
directory of the Download partition.

Referring to FIG. 17, a block diagram of OS packages
communicated with data storage is shown. This information
is then inspected to determine what files need to be zeroed and
deleted, if the currently active OS needs to be backed-up or
not, and what Manifest files need to be deleted.

An example method for installing a package may include
the following steps: (1) Turn off all file and memory valida-
tion. (2) If an OS partition is to be updated, backup the
currently running active partition into the backup partition.
(3) Update the boot.id file to indicate which partition is to be
started when the system is powered on. (4) Zero and delete the
old Manifest file(s). (5) Copy in the new Manifest file(s). (6)
If'the file to be installed is an image, then copy the new image
onto the partition or device. (7) If the files to be installed are
individual files, zero and delete the existing ones and then
install the new one. (8) Install all other files. (9) Synchronize
the disk and access the free block table for the partitions
affected. (10) Loop through each free block and ensure that it
contains zeroes. (11) Return control to the Download Installer
code to send back status and reboot the EGM.

For files other than images, all unused blocks on the various
partitions are preferably zeroed for compliance with regula-
tory requirements. In an example embodiment, the EGM
system uses a free block table to determine which blocks to

US 9,135,778 B2

33

zero, because a package may contain a tar file which only has
a sub-set of the total files defined within the Manifest file.

The system is rebooted and BIOS validates all of the mani-
fests and starts the new system environment. If this fails, the
OS faults, and an operator must reboot the system. Upon
reboot, BIOS will switch back to the backup copy and restart
the system. The BIOS determines which copy to boot from by
analyzing the contents of the boot.id file. If both the new
installation and the backup fail, a new system will need to be
installed either with a new compact flash or by rebooting the
disk with to the recovery run environment. The recovery run
environment is a small operating environment that allows for
downloading new contents to the EGM. It does not support
game play, it only allows installation of packages onto the
EGM.

Referring to FIG. 18, a functional block diagram of a
system uploading and downloading packages is shown. The
SMS (System Management or Control Server) is the point
where requests and operations originate from by use of the
add package and uploadPackage G2S commands. These
commands contain enough information to allow the EGM to
construct cURL commands to allow it to communicate with
the PDS (Package Download or Package Server). cURL is an
example product that supports various communication pro-
tocols for the uploading and downloading of files. A package
is a file in the eyes of the cURL product. Refer to http://
cURL haxx.se/docs/manual.htm] for detail information on
the cURL support and capabilities which is hereby incorpo-
rated by reference.

In an example embodiment, G2S communications
between the System Management Server and the EGM. The
SMS provides an addPackage or uploadPackage G2S
request to the EGM. The request contains the following infor-
mation:

Parameter Description

Location ID
Parameters

The URL or IP address of the Package Download Server
This field will contain any additional information needed to
communicate with the Package Download Server.

Things that can be defined here are the user ID and
password, unique transfer parameters

such as speed, packet size, and the like,

and any other unique cURL parameters.

The Package ID is the name of the file as it exists

on the Package Download Server. This is also the name of
the package as it is stored on the EGM.

Package ID

When the download support receives this command infor-
mation, it will generate a cURL command line command
string and execute it. The cURL support will then handle all
communications with the PDS. When the transfer has com-
pleted, either successfully or with an error, control is returned
to the download support on the EGM which logs the result
and sends stats back to the SMS.

In an example embodiment, communications pacing, error
recovery and control is handled by the System Control Server.
The addpackage and upLoadPackage G2S request contains
the necessary parameter information, such as when using
cURL. The protocol used to transfer packages between the
EGM and the Package Download Server is sufficiently robust
and compatible for use with other languages that may be used
to support the download operation, such as cURL. Each pack-
age is a single file that may contain one or more files. Encryp-
tion and decryption may be handled by the transfer protocol.

FIG. 18 illustrates by example the communications flow
between the three major components involved in uploading
and downloading packages. The DLInstallMgr module

5

10

15

20

25

30

35

40

45

50

55

60

65

34
within the EGM receives the addPackage and upl.oadPack-
age requests from the System Management Server. The
request is validated to ensure that the package does not
already exist. It is then passed through the download driver to
the Dlreceiver module. The Dlreceiver module then performs
the following tasks:

(1) Updates the status of the SMS request; (2) sends request
received status back to the SMS; (3) creates the cURL com-
mand; (4) sends request in process status back to SMS; (5)
uses system call to execute cURL support and waits for
completion; (6) when return received from cURL, sends
either error or package received status to SMS; (7) if package
received successfully, validates that the package’s content
SHA-1 value matches the SHA-1 value in the package
header; (8) updates packages status with either package vali-
dated or package not validated and send to SMS; and (9) ifa
package error occurs, deletes the package from storage.

In an example embodiment, the EGM Download Package
Distribution Serve Support uses the cURL support to handle
all communication transfers between the download server
and the EGM. It is capable of supporting HTTPS, HTTP,
FTPS, FTP and a number of other protocols. The information
that the cURL utility requires to communicate with the down-
load server may be contained within the addPackage and
uplLoadPackage commands from the System Management
Point (SMP). The SMP may provide the EGM cURL support
with any required certificates in the format required by the
cURL support.

In an example embodiment, the addPackage and upload-
Package commands contain

the transferl.ocation, transferParameters and transterType
attributes. transferLocation: The transferlocation attribute is
used to define the fully qualified path where the package to be
downloaded is retrieved from and the package to be uploaded
is saved to. It consists of the host name/address and the
directory and file name. This information will be passed into
the cURL support to retrieve or transmit the package.

transferParameters: The transferParameters attribute will
be used for any additional information required by cURL to
perform the transfer. Currently, the parameters defined as
being supported are:

userid: The user ID is used to define a unique user ID to log

into the server.
password: The password parameter is used to define the
password for the user id.

certificate: A unique certificate needed to communicate
with the download server. It is expected that the certifi-
cate will be in the format expected by cURL.

In an example embodiment, parameters may be separated
by a space. For example, to specify a userid and password, the
following string would be passed in the transferParameters
attribute: userid:duser password:dpassword

transferType: The transfer type attribute specifies who is
the initiator of the transfer. This will be used to generate the
cURL command to ensure the proper transfer takes place.
Refer to the G2S Download Specific v0.8 (hereby incorpo-
rated by reference) for details on the values that can be speci-
fied for this attribute.

Referring to FI1G. 19, a block diagram of a gaming machine
OS example validation Manifest file is shown. It shows a
methodology for validating files stored in an EGM storage
device. The methodology provides reliable and early detec-
tion of any corruption that may exist in files stored on the
EGM. In addition, the methodology makes it easier to tran-
sition to new technologies that enable the updating of indi-
vidual files on the EGM’s storage media instead of replacing

US 9,135,778 B2

35

the complete storage media with all new files. Within this
description, the words authentication and verification are
used as follows:

Authentication of a file uses a digital signature (or some
comparable identifier) created from a public and private key
pair. Verification of a file uses a SHA-1 hash value (or some
comparable identifier) created over the entire contents of a
file.

Reference is also made to an initial RAM Disk. This is an
in memory logical disk used by the Linux kernel to load
support code when it is initializing the system and creating the
environment under which the Linux system will run. It is
created using a compressed file that contains all the modules
and programs supported. In the new file validation environ-
ment, this RAM Disk may contain the file validation module
and the fault dog module, as well as some hardware support
modules needed to start the Linux support. The words disk,
CompactFlash® and flash are used interchangeably within
the document. They all refer to the media where files are
stored on a gaming machine.

An example embodiment including a file authentication
implementation involves BIOS extension code calculating a
SHA-1 hash value (or greater, e.g., SHA-256) over the entire
contents of non-secure media, such as a CompactFlash®, and
then using the hash value in conjunction with a digital signa-
ture and public key to verify the contents are authentic. Con-
trol is then passed from the BIOS extension to the Linux
kernel to load the system code. During the Linux software
initialization start up phase, a table of disk offsets, sizes, and
digital signatures are read from the area preceding the first
partition of the CompactFlash and placed in a RAM memory
table. As files are opened during normal operation, the entry
in the RAM memory table whose disk offset matches the start
of the file is found, the SHA-1 of the contents of the file is
calculated, and a signature is generated and authenticated.

In another embodiment, a File Validation Methodology
uses Validation Manifest Files (VMFs). Each VMF contains a
header portion describing the contents of the VMF. The VMD
header is then followed by an entry for each file the VMF
refers to. The file entry consists of the fully-qualified file
name, a process flag, and a SHA-1 hash value computed over
the entire contents of the file. This SHA-1 hash value is
digitally signed and the SHA-1 HASH and Digital signature
stored in the VMF’s header. When the EGM is powered on,
BIOS extension code will calculate the SHA-1 hash of each
VME’s content, validate the SHA-1 hash and authenticate the
digital signature for the VMF. Additionally, the BIOS code
calculates a running SHA-1 hash value for the contents of all
VMFs processed. This cumulative VMF SHA-1 hash is saved
at a predefined location in system RAM.

The BIOS code also validates the SHA-1 hash value of the
Linux kernel binary code and the initial RAM disk contents
file. If an 0ld style Game flash which does not support the new
file manifest implementation is present, the BIOS will calcu-
late the SHA-1 hash value, validate it, and authenticate its
DSS signature. This SHA-1 hash value is stored in a pre-
defined RAM location for use by the validation driver. When
everything is authenticated and validated, the BIOS code
extension then loads the Linux kernel and RAM disk contents
and passes control to the Linux code. During the processing
of the Linux kernel start-up code and before enabling the
system and game run environments, a script is run from the
initial RAM disk which loads the validation driver from the
initial RAM disk. This validation driver reads the VMFs,
computes the cumulative SHA-1 hash value for them, and
validates that the SHA-1 hash value matches the one com-
puted by the BIOS code. The driver also creates an IN RAM

10

15

20

25

30

35

40

45

50

55

60

65

36

table containing the VMF file entry information. As each file
is opened during normal operation, a SHA-1 hash value is
computed for the contents of the file, and this is validated
against the SHA-1 hash value contained in the VMF. The
validation driver will also calculate the hash value of the
contents of an old style game flash, if present, and verify that
the hash value matches the one computed by the BIOS code
and stored in RAM.

In another aspect, a background process started during the
initial EGM startup procedure continuously loops calling the
validation driver to validate each file that exists in the EGM’s
storage media. A kernel process is started and periodically
validates the entire contents of an old style game flash if
present. This kernel process also verifies the number of free
blocks on the storage media has not changed.

In one example of File Validation Methodology Implemen-
tation, new File Validation information may be generated
from a binary compatible image as it currently exists. All
information is copied from the binary reproducible image
into the new format that supports VMFs. No files from the
binary compatible image are modified during this process.

Referring now to the Validation Manifest File Creation,
initially the Validation Manifest Files may be created. They
include: (1) kemel.mnfst—This manifest pertains only to the
Linux kernel that will be used to run the EGM software. (2)
initrd. mnfst—This manifest only pertains to the contents of
the initial RAM disk created by the BIOS code. (3)
Linux_base.mnfst—The manifest that contains all the files
associated with the Linux support. (4) games.mnfst—All the
files associated with the specific game that will be run on the
EGM.

Each VMF header contains the following information:

Field Description

DSS Signature Digital signature of the VMF’s SHA-1 hash value
generated with a public and private DSS key pair.

SHA-1 Hash SHA-1 hash value of all the file entries within
the VMF.

Control Flag Identifies the kind of VMF (Linux Kernel,
INITRD file, Normal).

Manifest ID Unique string to identify the VMF.

Release Version Version release identifier of the VMF.

Time Stamp Time stamp of when the VMF was released.

File count Number of file entries in the Validation Manifest File.

After the VMF header, the VMF contains entries for all the
files the Validation Manifest File applies to. Each file entry
contains the following information:

Field Description

File Name Null terminated string containing the fully qualified
file name.

When the file should be validated.

The SHA-1 value of the file contents.

A carriage return character to signal the

end of the entry.

Processing Flag
SHA-1 Hash Value
Entry End Marker

The VMFs are created by a utility which uses the binary
reproducible image ofthe partition where the files are located.
It extracts all of the file names contained in the binary image,
opens each file and calculates a SHA-1 hash value for the
contents of the file. The VMF file header is generated to reflect
the contents of the Manifest file. A detail entry for each file is
created and stored in the VMF. After all the detail file entries
are placed in the VMF, a SHA-1 hash is calculated for all the
information from the control flag to the last detailed file entry
in the VMF. The SHA-1 hash is then stored in the VMF header

US 9,135,778 B2

37
and is digitally signed with a private/public key pair. This
digital signature is the saved in the VMF header.
After all the manifests are generated, a new image is cre-
ated for the new validation methodology. The following rep-
resents how the OS compact flash image may look:

Partition No. Contents

1 Manifest Partition - Contains Manifest files, public key,
configuration files, Linux Kernel and Initial RAM disk
image.

2 Linux and Game OS read only Partition, and all Linux files
and Games OS files.

3 Alternate Linux and Game OS read only partition. Only

present when the storage media is greater then or equal to

1Gb in size.

Download Partition - A non-executable partition used

to store downloaded changes to the system and

various log files.

3or4

Depending on the size of the media being used, there will
either be 3 or 4 partitions. If the media size is greater then or
equal to 1 gigabyte, 2 partitions will be created to hold the
Linux System and the Gaming OS files. One of the partitions
will contain all the files for the active running game environ-
ment while the other contains a backup copy of the files used
to successfully run the game environment. The backup exists
for future use when dynamic updates will be made to the
system. If the updates cause the gaming system not to run,
then the gaming machine can be restarted from the back
partition, which contains a copy of the last good running
environment.

The last partition, Download partition, is used to store the
log files and in the future, and the software updates that are to
be applied to the gaming system. It is a read/write partition
that does not have executable permissions.

All log files contained within the Download partition may
use a HMAC hash algorithm (or comparable algorithm) for
the log entries to ensure their security and validity. Various
choices can be made for a hash seed, and an example is the
Ethernet MAC address.

When a new game CompactFlash is produced, it may be
generated in the same manner as the Operating System (OS)
CompactFlash and may have the following format:

Partition No. Contents

1. Manifest Partition - Contains manifest associated with the
game. If more than one game can be present, it will contain
a manifest for each game.

2. Game partition - Contains all the files associated with the
game or games if multiple games are supported.

These new CompactFlash images are passed into the sign-
ing utility. The signing utility reads in each VMF and using a
private and public key pair, generates digital signatures for the
VMEF. The digital signature is then stored in the header area of
the VMF. The public key is copied to a file called dss key.dat
and saved in the configuration directory in the manifests
partition of the image.

Referring to FIG. 20, an example block diagram of an
EGM OS partition layout is shown. FIG. 20 illustrates how
partitions may be laid out on a compact flash or hard disk.
OS1 and OS2 are the active and backup copies of the operat-
ing system. Only the active partition is mounted for use while
the game machine is enabled. It is marked as read only and
executable. The Download partition is used to store the log
files as well as to store changes that are to be applied to the

15

20

30

35

40

45

50

38

gaming machine. It is marked as read/write and non-execut-
able. The manifests partition is marked as read only and
non-executable. The extended partition in FIG. 20 refers to a
logical partition definition that comprises the physical parti-
tions (5 and or 6) that follow it.

Within the /manifests partition are directories that contain
configuration information such as the boot.id file which tells
which OS was booted and whether to activate partition OS1 or
0OS2. The public key used to sign the manifests is also stored
in the /config directory. The OS1 and OS2 sub-directories
contain the manifests relative to the Linux kernel and initial
RAM load, the files contained in the Linux utilities and librar-
ies, the game OS programs and libraries, the Linux kernel
binary executable and the file containing the initial RAM disk
contents. A game Compact Flash containing the new file
validation manifest information has its manifests partition
logically linked to the OS manifests partition game directory.

In one embodiment in which there is BIOS processing of
Validation Manifest Files, when the gaming machine is pow-
ered on, the XYZ Technologies proprietary BIOS extension
code stored in the BIOS secured BIOS EPROM performs the
following tasks: (1) Authenticates the digital signature on the
BIOS component; (2) Calculates the SHA-1 of the contents of
the Jurisdiction EPROM and authenticates its digital signa-
ture; (3) Calculates the SHA-1 hash of each VMF on all
Compact Flashes and authenticates their digital signatures;
(4) Calculate the SHA-1 hash value of the Linux kernel file
and initial RAM disk contents stored on the OS Compact-
Flash. These hash values are validated against the hash values
stored in the authenticated Validation Manifest File for the
Linux kernel and initial RAM disk; (5) Calculates a cumula-
tive SHA-1 hash value for all VMFs on all Compact Flashes;
(6) If an old style game CompactFlash is used that does not
support Validation Manifest Files, the SHA-1 hash of the
Compact Flashes contents is calculated and its digital signa-
ture is validated; (7) Saves the calculated cumulative mani-
fests SHA-1 hash values and the old style game SHA-1 hash
value address 0x0900 in RAM memory of the gaming
machine; and (8) Copies the authenticated and validated
Linux kernel code and RAM disk contents into the gaming
machines RAM memory and passes control to the Linux
kernel start up code.

If any of the digital signatures are not correct, or if the
calculated SHA-1 hash value does match the SHA-1 hash
value stored in the authenticated Validation Manifest File, an
appropriate error message will be displayed on the gaming
machines video screen, and the gaming machine will be
halted. Manual intervention will be required to correct the
problem and to restart machine.

Referring to FIG. 21 and 22, an example flow chart of a
BIOS Control boot up is shown. FIG. 21 shows the logical
processing of the BIOS authentication and validation proce-
dures and the initial start up logic ofthe Linux Kernel and File
Validation Module.

Referring to FI1G. 23, an example flowchart of an EGM File
Validation is shown. An example File Validation Processing
in a running Gaming Machine may include File Validation
Driver Processing.

When the Linux kernel receives control from the BIOS
extension code, it will load the file validation driver code from
the RAM disk that was authenticated and loaded by the BIOS
code described above. This file validation driver performs the
following operations: (1) Reads all the VMF files from the
Compact Flashes and builds an in-memory table that contains
the information from the detail entries in the VMFs. (2) Cal-
culates a cumulative SHA-1 hash value for all VMFs and
validates that it matches the SHA-1 hash value calculated by

US 9,135,778 B2

39

the BIOS code and stored at address 0x0900 in RAM
memory. (3) If the game CompactFlash is not in the new
format, calculates a SHA-1 hash value aver the entire contents
of'the game CompactFlash and validates that it is the same as
the one calculated by the BIOS code and stored at address
0x0900 in RAM memory. (4) Places a branch address in the
file open code to call the File Validation Driver whenever a file
is opened in the system.

If any of the validations fail, an error message will be
displayed on the gaming machine’s video screen and all pro-
cessing will stop. A log entry will be placed in the /Download/
fault.log containing the date and time of the failure as well as
what type of error caused the machine to shut down. Manual
intervention will be required by authorized personnel to cor-
rect the problem and restart the gaming machine.

Once the file validation driver initialization is complete, the
rest of the gaming system code is loaded, and the game is
started. Whenever a request is made to open a file that resides
in a read-only partition, the system open code calls the file
validation driver with the fully-qualified name of the file to be
opened. The file validation driver performs the following
operations before allowing the file open to proceed: (1) Looks
up the file name in the in memory validation table built during
the validation driver initialization. (2) Logs an error and halts
the machine if the file name is not found. (3) Calculates the
SHA-1 hash value for the entire contents of the file to be
opened. (4) Verifies that the SHA-1 hash value is the same as
the one stored in the in-memory validation table.

If the SHA-1 hash values match, the file open is allowed to
continue and processing proceeds as normal. If the file was
not found in the validation table or the SHA-1 hash values do
notmatch, all processing on the gaming machine is halted and
anappropriate message is displayed on the gaming machine’s
video screen. A log entry will also be placed in the /Down-
load/fault.log file. Manual intervention will be required by
authorized personnel to correct the problem and restart the
gaming machine.

The EXT2 file system is used to format the partitions on the
gaming device’s storage media. The file system is divided
into physical blocks of storage all of the same size, A table is
maintained by the file system that indicates which of these
physical blocks are used and which are not used. Whenever
data is written to the one of the file system’s unused blocks,
the file system’s table is modified to indicate that the block is
no longer free.

The file validation driver starts a kernel process that runs in
the background and uses the free block information to vali-
date the integrity of the storage media. When the kernel
process is initially started, it reads the free block information
from the file system and stores it in memory. It then performs
a delay loop that reads the free block information and vali-
dates it has not changed from when the information was first
read. If any free block has changed, then a fault will be
triggered on the gaming machine and an appropriate error
message will be displayed on the gaming machines video
screen. All gaming machine processes will be stopped until
the problem has been corrected by authorized personnel.

A second function of this process will validate the contents
of'a game flash that does not contain the new file validation
manifest information. It calculates a SHA-1 hash value over
the entire contents of the game flash and validates that it
matches the SHA-1 hash value that was calculated by the
BIOS when the gaming device was initially powered on. If the
hash values do not match, the gaming device is halted with the
appropriate error indicators and messages, and itrequires
authorized personnel to restart the gaming device once the
problem has been resolved.

10

15

20

25

30

35

40

45

50

55

60

65

40

Background Validation Processing

After the file validation driver and kernel free block vali-
dation process have been started, additional background pro-
cesses are started. The first thread is used to ensure that no
existing files have been modified and no new files have been
added. The second one is used to ensure that unused areas of
the storage media are zero filled and to zero fill unused areas
of'the modified disk partitions after an authorized change has
been made.

File Verification Process

This background process is used to validate that all the files
residing on mounted read-only partitions have not been modi-
fied and are present in the validation manifests. The process
searches all of the directories and files that are known to the
system. For each file that is on a read-only partition, a call is
made to the file validation driver passing it the name of the
file. The file validation driver verifies that the file is in the file
validation manifest table, and that the SHA-1 hash value of
the file contents matches the SHA-1 hash value stored in the
file validation table. This insures that the calculated hash
value for the files contents matches the BIOS authenticated
hash value determined at system start up. If either of these
fails, the gaming device will be halted with the appropriate
error indicators and messages. As with all other failures, an
authorized attendant will be required to correct the problem
and restart the gaming device.

Free Storage Validation and Initialization

This background process is optionally available to verify
that all of the free blocks on a storage device are zero filled, or
to initialize free storage blocks to zero.

A processing loop can be created that calls this process
periodically to ensure that all the blocks that are marked free
within a read-only partition are in fact zero filled. The process
reads each free block and verifies that each byte within the
block is zero. If a block is found not to be zero, an error
condition is raised and the gaming device is stopped. Autho-
rized personnel must then correct the problem and restart the
gaming device.

Gaming Device Storage Media Modifications

Another function provided by the free storage validation
and initialization process is when an authorized modification
is made to the gaming device’s storage media. The modifica-
tion procedure may include the following: (1) Any files that
are to be deleted from the storage media are first rewritten
with all zeroes and then deleted. (2) All updates to existing
files are made. (3) Any new files are added. (4) The File
Validation Manifest file is replaced. (5) The background task
is called with the partition name to zero fill all unused blocks
on the storage media’s partition. (6) The Gaming Device is
restarted using a power off/on cycle.

Any modification that is made to the gaming device
requires that an existing file validation Manifest file be
replaced with a new file validation Manifest file that reflects
the changes to the files stored on the gaming device’s storage
media. Since the file validation manifest is being changed, the
gaming device must be stopped and restarted. This is required
to allow the secure BIOS to authenticate and validate the new
operating environment and File Validation Manifests, and to
allow the validation driver to rebuild the in-memory file vali-
dation table. A power off and on of the gaming machines
insures that the chain of trust and authentication is in tact after
a change to the gaming machine’s storage media.

System Fault Manger and Hardware Watchdog Support

The EGM contains a hardware Watchdog register which is
used by the fault management support to ensure that all
required processes and threads in the gaming software are
active and functioning.

US 9,135,778 B2

41

Hardware Watchdog Support

The Faultdog support interfaces with the Watchdog sup-
portto detectifarequired thread no longer exists and to restart
the EGM after a fault has been detected, reported and
acknowledged. The Faultdog manager may be the only pro-
cess in the system that interacts with the Watchdog support in
order to increase the level of integrity and assurance.

If'the Watchdog circuit is enabled, its timeout counter must
be regularly cleared before the timeout period. If a timeout
does occur, it indicates that the CPU must be locked-up, and
the CPU is hardware reset. An enable bit enables both the
Watchdog and the I/O Halt from the Protection Circuit. One
or more bits may set the timeout period. For example a 7-bit
field with a resolution of 0.1 S and may provide a range of
0.1-12.8 seconds. The incrementing of the timer and writes to
the timeout register are not synchronized, so the timeout
period has 0.1 S of tolerance which may be important for
small timeout values.

In one embodiment, a Watchdog program is enabled and
utilized by the system. First, the Watchdog counter is free-
running, so if the timeout value happens to match the counter
when the Watchdog is enabled, the CPU is reset possibly
initiating an endless cycle of resets. To prevent this, the
Watchdog is enabled on power-up with the timeout initially
set to the maximum, for example 12.8 seconds. Second, once
the Protection Circuit times out, it can only be reset with a
hardware reset. This means that if the Protection circuit is to
be used, servicing must start before its first timeout, for
example, 15 minutes. These two limitations prevent enabling
and disabling the Watchdog with different applications, so the
Watchdog should be initialized at power-up or not at all.

Clearing the Watchdog Counter: The Watchdog counter
may be automatically reset when a timeout value is written
and a corresponding clear flag is set.

Manual CPU Reset: Writing all zeros to the ‘NW Watch-
dog Register’ forces a manual hardware reset to the CPU. To
prevent glitches inadvertently resetting the system when
enabling the Watchdog, the timeout value should already be a
non-zero value, prior to clearing a reset flag.

Software Faultdog Support

The Faultdog support may be used to increase the chance
that all faults are caught, reported and not lost. The basic
functions of the Faultdog may include: (1) Monitor all regis-
tered processes to detect errors or unauthorized removal of
them. (2) Manage the hardware Watchdog register to avoid
system hangs. (3) Display generic user message when a fatal
error occurs and turns on top box lights. (4) Log detailed fault
description message when fatal error occurs. (5) Display
detail fault description message when the attendant key is
turned. (6) Display a message when the door is opened after
a fault has occurred. (7) Display a message when a Game or
OS flash has been removed. (8) Automatically detect cabinet
type and port configuration. (9) Automatically reboot the
EGM when attendant key is turned for the 2nd time after a
fatal error. (10) Independence from any specific video or [/O
requirements. (11) Catch kernel panic errors, show detail
information about panic and prevent the EGM from automati-
cally rebooting after the panic occurs.

In an example embodiment, file, partition and memory
validation threads register with the Faultdog manger when
they are first started. The Faultdog monitoring support con-
tinuously runs in the background checking to see if the
threads that were registered are still active in the system. If the
registered thread is no longer active on the system, a fatal fault
is raised. This fault is written to the fault log, and the appro-

20

35

40

45

60

42

priate message is displayed on the screen. Attendant interven-
tion is required to clear this fault and restart the EGM via a
power up cycle.

The Faultdog manager also resets the hardware Watchdog
timer to signal that the system is still alive. If for any reason,
the Faultdog manager does not reset the hardware Watchdog
timer, it will expire and cause a system failure. The Faultdog
driver and process ensure that all of the required processes are
still active, and the hardware Watchdog timer is used to verify
that the Faultdog code is still active.

Faultdog Error Logging Support

Errors that are detected by the Faultdog management code
may generate an error to be displayed on the video screen,
turn on the candle lights at the machine, and cause an error to
be written to a Faultdog error log. The error displayed error
message and logged error will contain the following: (1) A
date and time stamp of when the error occurred. (2) The task
ID of the task that was running at the time of the error. (3) A
description of the type of error that was encountered. (4) If the
error was caused by file validation, the name of the file being
processed.

The Faultdog error logging support is only available after
the BIOS code has finished processing and the Faultdog sup-
port installed. The Faultdog support is installed as the first
support during the Linux kernel initialization and setup pro-
cess and prior to any other authentication and validation code
in the system.

When the G2S Download support is introduced into the
system, any authorized regulatory monitoring authority will
be able to request a copy of the error logs to be transmitted to
them along with any relevant validation data. The initial
implementation will support logging of only the last fault that
caused a system failure. This is because the first fault encoun-
tered will cause the machine to stop all processing. If the
regulatory authorities define a need for keeping a history of
fatal faults, then it will be added in the future.

Referring to FIG. 24, an example block diagram illustrates
an OS image build procedure. As can be seen in the diagram,
the developer would make code changes and build the OS
flash binary image as usual. This insures that binary compat-
ibility regulatory requirements are met. After the binary file is
created, it would be copied to the build_release directory. The
first command file to run is the build_os_validation.sh proce-
dure. This copies the files from the binary image and places
them in a new image (release.val) that uses the Ext2 file
system. The new image also modifies the partition layout as
required by the file validation support. The release portion of
the file name will be the actual release string as defined within
the build configuration file (build.cfg). It also allows for the
size of the image to be changed.

Referring to FIG. 25, an example block diagram illustrates
a build gaming machine OS validation image. After creating
the new validation image, AVOS0000320-00.004.val, the
next step is to generate the Validation Manifest Files. The
command procedure to perform this is called cre-
ate_os_manifests.sh. The only parameter that this command
takes is the name of the validation image built with the buil-
d_os_validation.sh command (AVOS00000320-00.004.val
in our examples).

Referring to FIG. 26, an example flowchart illustrates a
gaming machine OS create manifest command procedure.
Once all the Manifest files are created, the next step is to
create a signed image. This is accomplished by initiating the
sign_os_validation.sh command.

The first parameter is the name of the validation image file
without the file extension. Next is the key ring name to be used
and optionally the name of the device compact flash is used to

US 9,135,778 B2

43
write the signed image to. In our examples, a signed image file
called AVOS00000320-00.004.img will be created in the
build_release directory.

Referring to FIG. 27, an example flowchart illustrates a
build signed OS image for a gaming machine OS. Once the
signed image is produced, it can be used to create as many
download packages as desired.

Referring to FIG. 28, an example flowchart illustrates a
procedure for building (generating) a game file validation
image. Building the signed game files is more straight for-
ward than the OS. Again the developer builds the game binary
image file as usual. The binary image file is then copied into
the build_release directory and used as input into
build_game_validation.sh procedure. The procedure will
produce a signed file validation game image and file valida-
tion Manifest files.

The first parameter is the name of game binary file, and the
second parameter is the name of the key ring used to sign the
file validation Manifest files. The resulting output is a signed
image file named AVGBLZ7000IA-00.000.img stored in the
build_release directory.

Example Procedure for Making a New Clear Chip

To make a new clear chip that is compatible with the file
validation procedures, a set of commands similar to the OS
build commands may be utilized. The basic steps are the
same, build_clear_validation.sh to build the new clear chip
image. The difference from the build_os_validation.sh com-
mand is that this command takes only the on2 parameter, the
clear chip binary file name. It will always produce a 64 Mb
flash image for the clear chip. The create_clear_manifests.sh
is used to create the Manifest files associated with the Linux
kernel and initrd file associated with the clear chip. Finally the
sign_clear_vlaidation.sh is used to create the signed image of
the clear chip.

Examples:

build_clear_validation.sh AVOCLEAR0314-00.001.bin

create_clear_manifests.sh AVOCLEARO0314-00.001.val

sign_clear_validation.sh AVOCLEAR0314-00.001 devel-
opment

Example OS Module Content Definitions

This section contains the module definitions for the OS
section of the EGM gaming system. Modules are used as the
basis for defining what file validation Manifest files will be
produce. The modules supported and the files contained
within them are:

kernel Module Name: kernel
Manifest Name: kernel.man
No. of Files: 1
Files: Vmlinuz-2.4.18-3 pt
initrd Module Name: initrd
Manifest Name: initrd.man
No. of Files: 1
Files: initrd.gz
Linux Base Module Name: linux__base
Manifest: Nameln__base.man
Linux USR Base Module Name: linux__ usr_ base
Manifest Name: In_usr_ base.man
No. of Files:
Files:
AGK Base Module Name: agk base
Manifest Name: agk_ base.mnt
No. of Files:
Files:
AGK Bin Module Name: agk bin
Manifest Name: agk_ bin.mnt
No. of Files:
Files:

10

15

20

25

30

35

40

50

55

60

65

44
-continued

AGK CFG Module Name: agk cfg
Manifest Name: agk_cfg.mnt
No. of Files:
Files:

AHK Lib Module Name: agk_ lib
Manifest Name: agk_ lib.mnt
No. of Files:
Files:

Example Build.cfg File Contents
The build.cfg file contains specific information as to what
information will be stored in the file validation manifest
header information. It contains the following items:
DATE:—The date that the release image is being built or
released on. Format: dd Month YYYY (Example: 29
May 2006)

TIME:—The time that the release image is being built or
release on. Format: hh:mm:ss (Example: 12:00:00)

RELEASE:—The release identification for the release

image. For example: AVOS00000320-00.004

SANDBOX:—The name of the sandbox.core directory

with the sandbox/agp directory.

Example: sandbox.core.3.20.00.000

Referring to FIG. 29, an example flowchart illustrates a
software download reading and processing of a gaming
machine OS. The download reading and processing software
(Download Installer) includes two threads. The first thread is
shown in the FIG. 29, and it is responsible for listening for
commands. The actions are performed by scripts, and this
thread accepts the commands setScript, deleteScript and
authorizeScript to place scripts in the processing queue,
removes them from the processing queue and authorizes their
execution respectively. Each script has a unique assigned
1D # which identifies it for all operations.

The second thread performs the actions of installing pack-
ages. It is shown in FIG. 30. It watches for the time window
specified for each script to occur, and then it executes the
script. If the package requires it, the EGM will be disabled
prior to installing the package. Whenever files are added or
deleted, this thread also forces the EGM to reboot.

The scripts can contain multiple packages. Each package
may contain multiple modules. A maximum of 10 scripts can
be in the processing queue at any time, and this is managed by
the download driver which forwards the commands from G2S
to this software, i.e., the Download Installer. The scripts may
also be used to perform simple tasks such as running a com-
mand. Each script also has a disableType flag which controls
whether the EGM is disabled or not, prior to executing the
script.

There is a User Interface called StatusDisplay. It is mostly
informational and displays messages such as “Operator ini-
tiated reboot required” and “Installation Complete”, and the
like. Although this software installs packages, it does not
download them. It merely obtains scripts from G2S com-
mands and executes them at the required time. The packages
should already be on the system when the scripts are
executed.

Example Download Installer System Design

The main input to the Download Installer is a separate
thread that reads from the download driver to receive set-
Script, deleteScript and authorizeScript commands. This loop
is constantly reading and processing the commands as shown
in the FIG. 29.

A different software, the Dlreceiver, processes the com-
mands, specifying which packages are to be downloaded
which are received from the SDSMP (or the Software Down-

US 9,135,778 B2

45

load System Management Point). The DLreceiver is also
responsible for downloading the packages to the EGM.

This software (i.e., the Download Installer) is only respon-
sible for processing the G2S script commands received from
the download driver and executing these scripts. The three
G2S commands received from the download driver are: (1)
setScript—This is to place a script in the queue in the order
specified by its time window. (2) deleteScript—This is to
remove a script from the queue, but it will not remove a script
that is already executing. (3) authorizeScript—This is to
authorize the execution of a script.

The authorizations which are received are stored along
with the queue. These are checked prior to execution of the
script. If a host is required to authorize a script and all the
authorizations were not received prior to the starting time
window of the script, then the script will be waiting for
authorization state before it can execute as shown in the FIG.
32. If the authorization is not received by the ending of the
time window, then the script does not execute.

Referring to FIG. 30, an example flowchart shows the state
flow when a setScript command is received by a gaming
machine OS. The first check is to see if any other scripts are in
the queue and to compare the first script in the queue, which
is waiting to the new script obtained. Unless the EGM has
already been disabled and the waiting script is already being
processed, the new script can be placed ahead of the waiting
script based on its time window.

Referring to FIG. 31, an example flowchart shows the state
flow when a deleteScript command is received. Even if the
script is being processed as long as it is not actually installing,
it can be deleted. However, if'it is in the process of installing,
then it is too late and “script installing” is returned. The other
three possible return codes are “script deleted”, “script can-
celed” and “error” as shown in the FIG. 31.

Referring to FIG. 32, an example flowchart shows a script
processing procedure of a gaming machine OS. A different
thread processes these commands as shown in the FIG. 32. It
is based on a micro sleep loop and tests for the first time
window to occur. Then the script starts to execute. First the
dependencies are checked and must be met for the script to
continue. If the disableType requires it, then the EGM is
disabled. At this point, a different software records all the
information on the EGM. Then the authorizations required
from different hosts are tested. If the authorization is not
granted the EGM could be re-enabled.

Once authorization is granted the operating system parti-
tion is backed-up, and the script is executed. There can be
many packages within a script, and after they are processed,
the system is rebooted if any files were added or deleted,
otherwise the EGM is simply re-enabled if it was disabled. An
example design is described below.

The six classes defined in this software are: (1) DLIn-
stallServer—the main class; (2) PackageParser—performs
all the parsing and unpacking of the package; (3) Script-
Queue—manages the queue of the scripts; (4) ProxySry—
this is used on the Game Manager side and the client is the
Download Installer; (5) ProxyClt—this is used on the Down-
load Installer side to talk to the Game Manager to determine
when events, such as cashout, machine disabled and the like
occur; (6) StatusDisplay—this is the Ul that displays mostly
informational messages DLInstallServer.

The main class in this program is the DLInstallServer. It
comprises the following storage elements and methods. The
methods are: (1) Open Driver—connects to the download
driver; (2) CloseDriver—disconnects from the download
driver; (3) DisableMachine—turns off the Game Manager,
performs cashout and the like; (4) EnableMachine—opposite

10

15

20

25

30

35

40

45

50

55

60

65

46

of DisableMachine (i.e., restart the game); (5) Reboo-
tEGM—does a reboot on the EGM; (6) BackupOS—backs
up the os partition to a different location of the Flash drive; (7)
ForceCashout——changes the state of the system so that the
credits are cashed out, in order that the EGM may be disabled;
(8) WaitForAuthorization—waits for authorization to
execute a script; (9) WaitForTimeWindow—Iloops on the
Idle() call until the time window is reached; (10) WaitForl-
dle—waits for the credits to become zero so that the game can
be disabled; (11) ExecuteScript—executes the script which
has met all the conditions to execute; (12) InstallPackage—
performs all the actions required to install a package; (13)
DisableMemory Validation—sends a message to Faultdog to
disable validation of memory, system files, game files and OS
files; and (14) CleanupFiles—deletes unnecessary files as
required.

The private storage elements may include: (1) ScriptQueue
scriptQueue; (2) PackageParser packageParser; and (3)
Proxy *proxy.

PackageParser

The package file is a binary file. It has to be parsed, its hash
value needs to be authenticated, and then it has to be
unpacked. Its methods are: (1) ParsePackage—opens the file
and parses it, authenticates it and unpacks it; (2) GetNextin-
stallltem—returns the next item in the package; (3) Uncom-
pressFile—the package file can be in a tar or zipped format,
and this method creates an uncompressed output file in a
different location on the Flash drive.

The private storage elements are: (1) FILE *pfd Package;
(2) FILE *pfdOutputFile; (3) char *pFullPkgHdr; and (4)
list<Pkglnstalllnfo>packagelnstalllnfoList.

ScriptQueue

This class maintains a list of script elements each of which
include all the information in the G2S setScript command.
The methods include: (1) operator<(const script &rhs)—to
support the sort operation; (2) active—returns the active
script (i.e., the script waiting to be executed); (3) insert—
inserts the script into the correct location, resetting the active
designation if required; and (4) delete—deletes the script
based on the search criterion which is the unique scriptID.

The private storage elements include:

list<script>data

ProxySry

This is used on the Game Manager side and the client is the
Download Installer. The methods include:

Triggered—calls the function handler

The private storage elements include:

Proxy::Handler handler

ProxyClt

This is used on the Download Installer side to talk to the
Game Manager to determine when events such as cashout,
machine disabled and the like occur. The methods are:

Trigger—calls the server which calls the handler

The private storage elements include:

IPC::Proxy *proxy

StatusDisplay

This is the UI which displays the informational messages.
The methods include: (1) Show—displays the message; (2)
Hide—hides the displayed message; (3) SetStatusDisplay—
sets the message to be displayed, and whether a touch
response is required; (4) RegisterButton PressNotification—
sets the handler when a touch response is detected.

User Interface (UI) Design

There is a User Interface called StatusDisplay. It is mostly
informational and displays messages such as “Operator ini-
tiated reboot required” and “Installation Complete”, and the
like.

US 9,135,778 B2

47

Example Download Package Install Handling

In an example embodiment, the Download BOB interface
will be modified to present the Download Installer code with
G2S like commands. That is, the SetlnstallRule commands
will be changed into setScript commands for processing by
the Download Installed. Also, the getScriptList and Get-
ScriptStatus commands will map the getlnstallRuleStatus
and getlnstallRuleList commands. In this embodiment, the
commands dealing with download logs will be handled in the
G2S support code and will not be a part of the Download
support. The interface level to G2S will be based on the BOB
Download Class Specification. cURL will be used to provide
the support for downloading packages via HTTPS, SFTP,
FTP, HTTP, and the like. For any multicast protocol, a locally
developed protocol may be required.

Example Commands

An embodiment may include the following commands and
rules:

(1) A separate thread will be used to issue reads to the
download driver to receive setScript, deleteScript, authoriz-
eScript commands.

(2) A table of scripts will be maintained. There will be a
maximum of 10 scripts allowed on the system at any one time.
Each entry in the script table will point to the next entry in the
script table. A global pointer will be used to point to the first
script in the table. The table will be arranged in a fifo queue,
and the scripts will be processed in the order in which the
setScript commands install time frames are specified. If an
authorizeScript command is received before the setScript
command, it will be rejected and an error event sent back to
the server sending the authorization command. The script
table will be maintained in both memory and on disk. The
status of the script entry will be updated on disk before the in
memory copy.

(3) When any of the script commands are received the
following will happen: (A) setScript: (i) If no setScript record
exists for this script, create and initialize script record with a
state of waiting to process. (ii) If other script records exist,
place this into the process queue according to its installation
start time frame value. (iii) If no other scripts in the process
queue, place it at the beginning of the process queue. (iv) If
script waiting for start install time frame and has a start install
time frame that is after the script just received, place the
already active script back into the process queue and set the
new script to waiting for the start time frame. (v) If the
machine is in disable state and currently processing another
script, just place the script into the script queue on disk. (B)
deleteScript: (1) If no script record for the specified script,
return error, no script present (i) If script record in process
queue, remove from process queue and send script deleted
event. (iii) If script is processing, and process state is install-
ing, send event script installing, not deleted. (iv) If script is
processing and not in an installing state, send event script
canceled, delete script record and reset states. If script waiting
is in script queue, start processing next script. (C) authoriz-
eScript.

Multiple hosts may be required to authorize a script to
proceed with installation. It must maintain a list of authoriz-
ing hosts and set their authorization state when received.
Installation can not proceed until all hosts authorize it. If no
script record exists for the specified script, reject authorize
command and send back an error event. If processing script,
sets script state to what is specified in the command for the
particular host specified in the authorize command. If not
processing script, sets authorization state to what is specified
in command for the specified host.

10

15

20

25

30

35

40

45

50

55

60

65

48

An Example Processing setScript Command

When a setScript command enters the processing state, the
following is a possible order in which things may occur: (1)
Check dependencies: hardware and modules. Module depen-
dencies can be satisfied by either already installed modules or
modules that exist within the packages being installed by the
setScript, and ensure to take into consideration that the other
package inthe setScript could be removing a module that may
be required. (2) Check the storage dependencies taking into
account that a package within the setScript command could
be removing a module and therefore freeing up storage. (3)
Wait for the install time frame. (4) Disable the EGM accord-
ing to disableType attribute. (5) Initiate the processing of
packages according to the initiate Type command. (6) Process
authorizations. There can be multiple authorizations
required. This includes a local operator authorization as well
as multiple host authorizations. (7) Scripts may or may not
contain command lists. If no command lists are included, then
the package is installed based on the contents of the package.
The Command lists will only exist for removing modules or
executing specific commands on the EGM that is not related
to installing or removing packages. (8) Whenever a package
is removed, its related file validation manifest must also be
removed from the system. (9) Whenever a module is installed
or removed from the EGM that cause a manifest to be modi-
fied, deleted or added, the system must be rebooted after the
installation completes. (10) Based on jurisdiction require-
ments and states specified in the setScript command, delete
the downloaded package.

An Example Installing and Updating Module Require-
ments

Whenever a module is installed or updated on a system that
has sufficient storage to maintain a backup copy of the oper-
ating environment, the following steps may be performed: (1)
Reset the partition access permissions to allow writing to the
partitions. (2) Copy the production environment into the
backup environment. This may be done via a background task
when an environment is activated and while the game is
running. (3) Apply the changes to the production environ-
ment. (4) ensure that the boot.id file is set to boot the produc-
tion environment and that a backup environment exists. (5)
Reboot the system according to jurisdictional requirements.

When processing the package, the package will either con-
tain a tar file for updates to the system or an image of a
partition or an entire storage media. If there is an image file,
a check needs to be performed to ensure that the image is the
correct size for the media.

When installing new games, this check will be performed
via a tar file. A check must be made to ensure that there is
enough space to hold the new or updated game’s files and
Manifest file. No backup will be made of an existing game on
the system. If the game fails to run, we expect that it will have
to be downloaded again from the server.

Installation Dependencies

Installation dependencies and pre-requisites are used inter-
changeably. Each may have a set of module, hardware and
storage dependencies that must exist before the module can
be installed. The dependency checking is performed as fol-
lows: (1) Module Dependency—A module dependency is
defined by it Module ID and Release Information; (2) Hard-
ware Dependency—The module dependency is defined by
the Hardware 1D and version number; and (3) Storage Depen-
dency—Defined by the storage type and the amount of free
space required.

For Release Information and the hardware version number,
a test flag will define how to identify if a dependency is met.
The dependency check flag will have the following values: (1)

US 9,135,778 B2

49

0—No check is performed. (2) 1—The release number or
version number must be equal to the one of the installed
hardware or module. (3) 2—The release number version
number must be greater than the installed one. (4) 3—The
release or version must be greater than or equal to the installed
one.

setScript Command Structure

The following describes an example setScript command
structure that may be passed into the download install logic:

Field Entry Field Type Description

setScript ID string Unique identifier for the setScript
command.

startTime time_t Specifies the start time frame of when the
attached command can start processing.

endTime time_t Specifies the end of the time window when
the attached scripts can start processing.

disableType integer Indicates the conditions under which the
EGM is to be disabled to start processing
the attached scripts.

initiateType integer Indicates the events that need to happen in

order to start processing the attached
command list.

A list of hosts that need to authorize the
installation of the package.

A list of package IDs to be processed by
this script command.

authorizeList string array

packageList string array

startTime/endTime

This is a date and time stamp that defines the start of the
time and end of a time window within which a setScript
command can start processing. None of the packages within
the package list can start processing before this date and time
are reached. The endTime is the date and time stamp after
which the setScript command cannot start. The start of pro-
cessing depends upon the initiateType being satisfied and all
the authorizations being met. If these are not met, then the
processing of the setScript command is suspended until the
time window is entered again. Once the first package has
started processing, all other packages will be processed
regardless of the time window.

disableType

This specifies how the EGM should be disabled. The EGM
cannot be disabled until the time processing time window is
entered. As soon as the disable conditions are met, the EGM
will be disabled and wait for the authorizations to occur. If the
authorizations do not occur within the processing time win-
dow, the setScript command will be discontinued and the
EGM re-enabled. The setScript command is then placed back
into the waiting to process queue.

initiateType

Specifies what actions need to take place in order to start
the installation. This includes host authorizations, local
operator authorization, and the like. These events can occur
before the EGM is disabled in the case of host authorizations.
All initiation requirements must be satisfied during the pro-
cess time window.

10

25

35

40

50

50

authorizeList

This is a list of host IDs who must authorize the setScript
command to start processing. If the host specifies authoriza-
tion is not granted, then the processing of the setScript com-
mand will be terminated.

Packagel ist

This is a list of packages to be processed. The packages will
be processed in the order that they are specified within the
setScript command. Module dependencies within one pack-
age may be satisfied by module in another package within the
package list. When a package specifies that a module is to be
deleted, then all the files within the Module Manifest file will
be deleted from the system along with the Manifest file itself.

The Software Download Package (SDP) support is a col-
lection of records and files that are download from a Software
Download Distribution Point to one or more EGMs. The
contents of the SDP are then used to update the software,
configuration and firmware on the EGM base on the contents
of the SDP. The following sections cover the definition, cre-
ation and installation of the SDP.

The SDP is configured into a header section and a data
section. The header section contains information about the
contents of the SDP, while the data section contains all of the
detail software changes. The data section can be in a com-
pressed format to reduce the size of the package and therefore
lower the amount of time required to transmit it from the
SDDP to the EGM.

A build package utility is used to generate the download
packages, and a package installed utility is supplied on the
EGM to install downloaded packages. Both of these perform
the necessary compression and decompression as well as the
data integrity checks of the contents of the package. The
package builder utility calculates a SHA-1 hash value over the
entire data contents of the package. This is then stored in the
package header and is used by the package receiver and
installed on the EGM to validate the contents of the package.
The package will not be installed on the EGM unless it passes
this SHA-1 validation.

The Software Download Configuration File (SDCF) con-
tains a number of keyword records that are used to define the
contents of the package, where to obtain the data to be
included in the package, how the data should be organized
and stored within the SDP, and where and under which con-
ditions the data is written onto the EGM.

Some keywords are required while others are optional. The
package: and module: keywords are special keywords used to
define the major sections ofthe SDCF. The package: keyword
must be the first entry in the SDCF. The detail configuration
entries about the SDP are then specified. After the entire
package definition entries come one or more module: defini-
tions. All of the updates that can be made to the EGM are
contained within the module: entries.

The following table contains all of the SDCF keyword
entries that may be specified:

Keyword

Description Example

package:
(required)

time__stamp:
(optional)

Specifies the name that will be given
to the package that gets created. This
is also used to name the package file.
A .pkg extension will be appended to
the value to create the name of the
package file.

The time stamp can be used to
identify when the package is created
or when it was approved for use by

Package: XYZ_OS

This would create a Software
Download Package called
XYZ_0OS.pkg

Time_ stamp: 03:30:03
04/20/06

51

-continued

US 9,135,778 B2

Keyword

Description

Example

release:
(required)

compression:
(required)

description:
(optional)

module:
(optional)

release:
(required)

time__stamp:
(required)

description:
(optional)

action:
(required)

manifest:
(required)

file:
(required for
add and update)

hdependency:
(optional)

Regulators. It must be in the format
of: hh:mm:ss mm/dd/yy.

This identifies a unique release value
for this particular package. The
release value is limited to 63
characters in length. Within the G2S
environment, release info is defined
as major.minor.release.verson

The compression entry specifies what
type of compression to use on the
contents of the package. The valid
compression options are: gzip, bzip2,
and none for no compression.

This is a maximum 64-character
string to provide a meaningful
description of the package. If spaces
are used in the description, then the
whole description must be enclosed
within quotations marks.

The module: entry is used to define
the name of the module this package
applies to. This name is the same as
the module ID in the G2S
documentation. Each module must
have a unique file validation manifest
associated with it. Any number of
modules may be included with a
single package.

This is the release information
associated with the module. The
format is the same as the release
information associated with the
package. It is used to uniquely
identify the build where this module
was produced.

The date and time that the module
was built for release. The format is
the same as the time__stamp: entry for
the package.

An option 64 character description of
the module. If the description string
contains spaces, it must be included
within quotation marks.

This specifies the action that is to
occur for this module. Valid actions
are: add, replace, update, and delete.
This identifies the file validation
Manifest file for the module. The
manifest contains the names of all the
files that are associated with the
module. A module can only be
defined within one manifest.

The file: entry is used to identify the
files from the module that are to be
included in the package. When an
update is being performed, the only
files that need to be in the package
are those that have changed. The file:
entry is made up of 2 fields. The first
identifies what type of files are being
included, and the next field is the
name of the file. When multiple files
are to be included, they must be
provided as a list in a file. See the
File Definition Section for a complete
description of specifying the fields to
be included. For files that images of
a partition or device, an extra field
that defines the name of the device or
partition must also be included.

Used to define a specific hardware
dependency that this module has.
Refer to the Module Dependency
section for a detailed explanation of
the format and options for hardware
dependencies.

release: 3.20.002.000

compression: gzip

description: “Game Manager
update”

module: agk.bin

(The Game Manager
executable is located within
the agk_ bin module
definition.)

release: 3.20.00.004

time__stamp: 03:30:03
04/20/06

Description: “Game Manager
module”

action: update

manifest: os/agk bin.mnt

File: list Game
Manager_ update.1st
File: dimage
devimage/dev/hda

hdependency “Seiko OSA-
66T none.

52

US 9,135,778 B2

54

53
-continued

Keyword Description Example
mdependency: This entry is used to define any other mdependency: Linux -
(optional) modules that this module is 2.4.18 2.4.18.003 equal

dependant on. The user specifies the

module name and optionally the

release information for the module

that this module requires in order to

run. See the Dependency section for

details.
sdependency: The sdependency: option is used to sdependency: “/Packages”
(optional) specify any storage requirements that 128000

the module has. This can be RAM or

ROM as well as storage media space.
command: Use this option to specify a command command: clean_ egm.sh
(optional) file to execute on the EGM.
time__stamp: The date and time that the module time__stamp: 03:30:03
(required) was built for release. The format is 04/20/06

the same as the time__stamp: entry for

the package.
file: The name of the command file to file: command
(required) include in the package. clean_egm.sh

An example of a Software Download Configuration File is
Module Action: Keyword Description.

The Module action: keyword

Module File: Keyword Description. The file definitions in
the configuration file are used to specify which files to include
for a module. Specific file types are:

List: When list is specified, this means that the named file
contains a list of files to include in the package. The file will
be used as input into a tar command to create a tar file that
contains all the files listed in the list file. Each file listed in the
list file must be a fully qualified path file name. For example:
agk/bin/Game Manager

Pimg: The pimg states that the file is an image of a particu-
lar partition. When this type of file is specified, the configu-
ration entry must include the name of the partition that will be
overlaid with this image.

Dimg: The dimg specification states that the file is an image
of'a device such as a compact flash. When using this type of
file, care must be used to ensure that the image size is the same
as the device size it is meant to be written to.

Flat: When flat is specified, this indicates that a single file
is being specified and that is just replaces the existing file on
the EGM. Multiple entries for this can be specified to accom-
modate multiple files.

Command: The command file type is used to identify a
specific executable command file.

File definitions are placed in the configuration after the
module that they are associated with. A module may have
multiple file entries associated with it. File entry examples:

file: list Game Manager_file.1st. This specifies that the files
to be included are in a file called Game Manager_files.1st. All
the files specified in Game Manager_files.1st will be placed in
a single tar file, and the file will be added to the package.

file: pimg hdbl.img/dev/hdbl. This entry specified that the
file hdbl.img contains an image of the partition/dev/hdbl and
will be placed in the package.

file: dimg hdb.img /dev/hdb. This entry specifies that file
contains an image of the device /dev/hdb. The image file will
be placed in the package.

file: flat agk/bin/Game Manager. A single file, agk/bin/
Game Manager will be added to the package.

file: command clear_egm.sh. A command file called clear
egm.sh will be placed in the package. Since no directory path
is specified, it is assumed that the file resides in the root
Directory of the signed image copy.

25

30

35

40

45

50

55

60

Dependencies

Dependencies are modules, hardware or storage that must
be installed on the EGM in order for the package to be
installed. Dependencies are defined by module. Each module
may have multiple dependencies defined for it, or it may have
none. The dependency is used to specify what hardware and
software must exist on the EGM in order for the package to be
installed. If a certain piece of hardware or a certain module
release level is required by a module and it does not exist on
the EGM, then the module will not be installed on the EGM.

Example Module Dependencies

There are three elements to a module dependency: the
module ID, its release information, and the test indicator
associated with the release information. The release informa-
tion for the module is optional whereas the Module 1D and
test indicator are always required. The test indicator can be
one of the following: (1) none: This indicates that it does not
matter what the release information for the module is. The
dependency is satisfied as long as the module exits on the
EGM. (2) =: The release information specified in the depen-
dency must be equal to the release information of the module
installed on the EGM. The release number on the EGM must
be greater than the release number specified in the configu-
ration. (3) >=: The release number of the module on the EGM
must be greater than or equal to the release number specified
in the configuration. (4) <: The release number on the EGM
must be less than the release number in the configuration. (5)
<=: The release number of the module on the EGM must be
less than or equal to the release number specified in the
configuration.

Examples:

mdependency: linux-2.4.18-3pt none

mdependency: agk_base 3.1.16.003>=

mdependency: ag_lib 3.2.20.003<=

Hardware Dependencies: Hardware dependencies are
similar to module dependencies. There is the hardware ID or
name of the particular device and optionally a version num-
ber. As with the module definition, if there is no version
information to check, the word, none, is used to indicate this.
Otherwise, the same comparison values can be used as in the
module definition.

Examples:

hdependency: MC-40 none

hdependency: “Seiko OSA-661: 1.00.01

US 9,135,778 B2

55

Example Storage Dependencies: The storage dependency
specifies the type os storage and the amount of free space that
is required. For example: sdependency: “/Packages” 128000
specifies that there must be 128000 bytes of free memory
available in the /Package partition for this module to be
installed. Storage can also define how mush memory the
EGM has, or how much NVRAM is installed, etc.

Host Interpreter: The functionality of a Host Interpreter,
Connection to a Configuration Service, and the Configuration
Service’s interface to the host user are described. The Host
Interpreter here is not specific to any existing protocol. It is
described as if it has total freedom of design and functionality.
The Connection to the Host system describes the messaging
to the host and back, but does not make intention of physical
transport media, or message headers, checksums, or security.
The Configuration Service GUI is described without knowl-
edge of what GUI is currently available. The focus is on what
information is presented and what functionality is available.

Configuration API: The Configuration API is an interface
supporting a configuration option, such as:

Member Strings Category, Name, Value, Minimum, Maxi-
mum, Allowed Values, Allowed Value Rules, Rules

Member Enums
Type Double, signed long, string, Boolean
Control Category, Single Line Edit Box, Multi-Line Edit Box, Slider,
Type Check Box, Check Box Array, List Box, Combo Box, Radio
Button
Member Read Only, One Time Settable, Is Set, Read Only With
Booleans Credits, Visible, Restrict To Allowed Values,
Unique Per Machine
XML Ideally, the Configuration option will be defined via XML.
Definition Not all member variables are required.
Some, such as minimum and
maximum, will only be present if they are applicable.
Example XML definition:
<struct>
<field name = “Category” value = ““ />
<field name = “Name” value = ““ />
<field name = “Value” value = ““ />
<field name = “Type” value = ““ /> <field
name = “Minimum” value = “* />
<field name = “Maximum” value = “* />
<field name = “Allowed Value” value = “* />
<field name = “Allowed Value Rule” value = “ />
<field name = “Control Type” value = “ />
<field name = “Rule” value = “ />
<field name = “ReadOnly” value = ““ />
<field name = “OneTimeSettable” value = ““ />
<field name = “IsSet” value = “* />
<field name = “ReadOnlyWithCredits” value = ““ />
<field name = “Visible” value = “* />
<field name = “RestrictToAllowedValues” value = “ />
<field name = “UniquePerMachine” value = “* />
<field name = “CommaDelimitedList” value = ““ />
</struct>

Each “Allowed Value Rule” applies to the Allowed Value
most recently defined. Multiple Allowed Values, Allowed
Value Rules, and Rules may be defined within the same
structure.

Each “Rule” applies to the Value in the same structure. In
this definition, Boolean values, (Case-Insensitive) “T”,
(Case-Insensitive) “True”, and “1” are considered to be true,
all other values are considered to be false.

Not all parameters will be present with every definition.
Only the parameters that apply will be given to save on system
and communication resources. All Booleans are assumed
false if not present.

10

15

20

25

30

35

40

45

50

55

60

65

56

Example Rules

Rules are defined for both Option Values and for Allowed
Values.

Multiple rules may apply in both cases. The rules allow for
a host system to display to the user real time if the configu-
ration they are creating is valid, lawful, and allowable. The
rules also allow for the host to predict if a configuration
change will work, and if not, what has configurations have to
change, or wait for a more better configuration time.

Example Categories

Options are arranged in a tree format using categories and
sub-categories. These are used to both organize the configu-
ration options, and to separate them.

Example Error Reporting

Error reporting is provided per option. The Configuration
Management system does not log these events, but it does
post them as they occur. Each error consists of a string, and is
associated to an Option. More than one error may occur at a
time, and multiple errors may reference the same Option.
Errors are a string of text and are not formatted or limited in
length.

Example Configuration Template

Each configuration option is defined by more than just a
string name value pair. Sufficient information is provided to
give a GUI interpreter information on how and where each
configuration option shall be displayed to a user.

Example Host Interpreter

A host interpreter is the implementation of host communi-
cation within the gaming machine. In final product, the host
interpreter will most likely be a component into an implemen-
tation of a wider scoped protocol than just configuration. A
host interpreter’s job will be to interpret, or translate the
configuration API within the gaming machine, to the protocol
for which it is designed.

Example Configuration Service Communication

Whether the configuration service is provided as part of
another protocol or on its own, the Host interpreter will be
transmitting and receiving communicating configuration
information to and from its host. It will transmit Configura-
tion Templates and configuration values, notify the host of
configuration changes and Configuration Template changes,
accept changes from the host, test changes from the host, and
report errors to the host system.

Example Server Side GUI

The Server side GUI should display the options to auser for
them to select and manage configuration. Each machine will
be identified by the gaming machine. This identity can be
recorded and remembered and will never change during the
life cycle of the machine. In this case the life cycle of a
machine is the time between NVRAM and EEPROM clear. In
most cases, even after EEPROM clear, the same identification
will be used. For example, the serial number usually matches
the value on the serial number plate riveted to the side of the
cabinet. The server can then display the machines to the user
in several fashions: By floor layout, by bank, by database, or
by search and select. Once a machine has been selected, the
interface will then provide options. The user can load a pre-
existing configuration from a file. The user can select a con-
figuration previously configured to this machine previously,
if available, or the user can opt to manually modify the con-
figuration. If the user chooses to manually modify the con-
figuration, they will be presented with the graphical represen-
tation of the Configuration Template.

Example Displaying Categories

Categories are intended to be displayed in tree form. Simi-
lar to file view, the categories should collapse and expand,
reducing the information displayed to what is relevant to the

US 9,135,778 B2

57

user’s needs. Categories can contain both subcategories and
options. Categories and options should be displayed in the
order they are defined in the Configuration Template.

For purposes to be described later, the categories also need
to be selectable, and multi-selectable (selecting multiple non-
concurrent categories).

Example Displaying Configuration Options

Each configuration option includes a definition of the
option, including how it should be displayed:

Member Variables (Category).

The name of the category that this object is to be displayed
under. This may not always be the last category defined. For
example, a category can contain options, some subcategories,
and then more options. The options following the subcatego-
ries would reference the parent category, not the last defined
subcategory (Name).

Name of the configuration option. The first character of all
Names are for internal sorting purposes, and should NOT be
displayed to the user (Value).

The value of the configuration option (Minimum, Maxi-
mum).

Optional, not all options have a minimum or maximum. If
present, this is the minimum value (Allowed Values).

Multiple allowed values may be defined (Allowed Value
Rules, Rules or Type Double, signed long, string, Boolean).

The value will be treated as a string in most cases, but the
Type signifies how it will be used when the configuration
option is applied. This also makes the GUI cleaner, because
alphabet characters can be excluded from doubles and inte-
gers, and Booleans can be restricted similarly (Read Only).

Boolean signifying if this is a modifiable option. It is pref-
erable that the ReadOnly flag be set once to prevent confusion
or conflicts when copying one machine’s configuration to
another (One Time Settable).

Boolean signifying if this option can only be set once per
RAM clear (Is Set).

Boolean signifying if this option has been set at least once
since RAM clear. If an option is One Time Settable and Is Set
is true, than the option becomes read only (Read Only With
Credits).

Read Only With Credits signifies that this Option can only
be modified while there are no credits on the machine (Vis-
ible).

Boolean signifies if this option can/will be displayed to the
operator (Restrict To Allowed Values).

Boolean signifies that the Value MUST be on the allowed
value list. When this flag is not set, Allowed Values are used
more as “suggested” values. Do not use this option in com-
bination with Control Type Combo Box (Unique Per
Machine).

Flag that signifies the option is part of the identity of a
gaming machine and should not be copied to another
machine. No two machines should have the same value
(CommaDelimitedList).

Flag that signifies if this option is intended to be a list of
values. Comma delimited lists are intended to have the format
[“(value)”,“(value2)”,“(value3)”].

Control Type

The control type is an enum defining how the configuration
option should be displayed. Each configuration object should
be displayed in its requested type for clarity and consistency.

Category

New Category. This will use the Value as the name of the
new category. The only other member variables that will
effect this option on the GUI end is the Visible flag. Value and
Allowed Values and Rules are still available when evaluating
Rules, but are not displayed to the user.

10

20

35

40

45

50

55

60

65

58
Single Line Edit Box
Simplest of Control Type. This is a text box that will accept
a single line of text.

Name

Multi-line Edit Box

This is a text box that will allow for multiple lines. Multiple
lines can be delimited by the windows return and new line, or
by Unix’s new line character, as long as the delimiter is
consistent.

Slider

This is a dragable slider bar. To use, provide a minimum
and maximum. It also supports the allowed value list. The
Value should be dragable from minimum value to maximum
value. If an allowed list is supplied, the Value should “Snap-
to” the nearest allowed value as it scrolls. If the type of option
is not compatible with a sliding bar concept, there is an error
in the template. If the option does not specify a minimum and
maximum value, use the smallest and largest allowed values.
If'the option does not specify minimum, maximum or allowed
values, then this is a template error.

Check Box

Used for
False=unchecked.

Boolean True=checked,

options.

O Name

Check Box Array

Used for comma delimited lists with allowed value sets.
Each selected checkbox will add a comma delimited string to
the Value. The checkbox names are from the Allowed Values
list. The arrangement of the checkboxes is ultimately up to the
GUI, but generally should be displayed row by row.

¥Allowed Value 3
CAllowed Value 6 TZAllowed
Value 7

MAllowed Value 1 ¥Allowed Value 2
FAllowed Value 4 ITAllowed Value 5

(The above selection would create the value “Allowed
Value 2”,“Allowed Value 3”,“Allowed Value 4”).

Supported Parameters:

Must be True:

Comma Delimited List

List Box

Displays Allowed Values to be chosen from by Operator. If
the option is a comma delimited list, the user should be able to
select multiple allowed values. If more allowed values are
present than will fit in a reasonably sized list box, the box
should support scrolling.

If the configuration option is NOT a comma delimited list,
the GUI may implement this as a drop down list box.

US 9,135,778 B2

59

Combo Box

Similar to a List box, with the exception of the user is not
confined to the allowed value list. They may enter their own
value. The GUI may implement this either as a fixed list box,
or as a drop down combo box.

Radio Button

Lists Allowed Values as Radio Buttons. The Operator will
be allowed to select one, and only one. Comma delimited list
is not supported with this control type.

CAllowed Value 1 ¥ Allowed Value 2 ¥ Allowed Value 3
FAllowed Value 4 MAllowed Value 5 MAllowed Value 6 TTAllowed
Value 7

Example Template Error Handling

For any error in the template, the presence of the error
needs to be displayed to the user. When possible, the GUI
should recover, and display the configuration option in a
manner that still allows the user to make some context deci-
sions and still configure the machine.

Example Unrecoverable Errors

Unrecoverable errors are errors that prevent the XML from
being parsed, or configuration options that are not display-
able, even in a generic form. The user should have the option
in both cases to get the Configuration Template from the
gaming terminal. The user should also have the option of
seeing the raw XML for any portions that are in error.

Example Unrecognized Control Type

If a new control type is developed, and the host does not
recognize the type, the option should still be displayed. The
most generic display of a type is the combo box. The combo
box should be able to obtain the configurable functionality of
any other object, with sufficient context and understanding.
The option should be highlighted in some way to signify the
error, and the user should be able to choose a supported
control type to redisplay the option, if they feel another con-
trol type would better suit the configuration options intention.

Example Option Parameters Incompatible with Control
Type

If the option parameters are incompatible with the control
type, the configuration object should still be displayed, and
the error should be noted by highlighting the configuration
option and displaying an error message explaining the prob-
lem. The user should have the option of overriding a param-
eter, or changing the control type. The risk with changing the
control type or parameter is that the gaming terminal may
reject the configuration option if the configuration option then
violates a rule.

Example Inconsistent Subgroup

It the category of an option does not match the previously-
defined hierarchy of categories defined, the option should
automatically be displayed under a new subcategory, and the
subcategory should be highlighted in a way to tell the operator
that the subgroup was automatically generated, and not part
of the template from the gaming machine.

Example Rule Violation

For each rule that is violated, there is an associated string.
Rules that violate allowed values should gray out the allowed
values in the control types that list allowed values, and should
simply be disallowed in others. When an option rule is vio-
lated, the configuration option should be highlighted to sig-
nify the error, and the text of the error or errors should be
displayed in context with the configuration option. For
example, the error text could display to the right of an option,
or just below.

10

15

25

30

35

40

45

50

55

60

65

60

Example Upgradability

Configuration Templates can and should be uploaded from
each machine at least once, when the machine first connects
to the configuration service, and also every time the machine
notifies the host of a Configuration Template change.

The rule evaluator should be implemented as a dynami-
cally-linked, replaceable module. This will allow updates
with minimum impact. The Host rule evaluator should be kept
in sync with the gaming terminal rule evaluator. New game
titles should never require new functionality in a rule evalu-
ator, but new OS development may support more keywords or
operators.

Compatibility Testing: Since the rules and templates can
not be version controlled cleanly due to non-linear develop-
ment and differences, compatibility testing needs to be done.
There are several stages where this check can take place.
When a new machine connects to the host, the host can
request the Test Configuration Template. The Test Configu-
ration Template will contain at least one instance of every
control object, and at least one instance of every rule operator
and special function. Every control object should be sup-
ported, and every rule should be resolvable without error.
Errors testing the test configuration are an indication that the
host support needs to be upgraded. New control types and
even new parameters should not prevent a machine or a con-
figuration service from functioning. Every option will func-
tion as a combo box, and parameters can be ignored. This is
because any errors can be caught by testing the configuration
on the gaming machine.

Example GUI Options

Tabs: Instead of having every category as a tree format, the
top level tree may be be expressed as tabs, and depending on
the complexity of the configuration tree, the second level of
categories may be displayed as sub-tabs. It is not recom-
mended to display more than two levels as tabs, so using tabs
is not a replacement of categories.

Condensed View: The condensed view idea would be to
display only the name of each configuration option, and then
pop up the control object when the configuration option is
selected.

Reduce Error Display: A complicated configuration option
may have several rules. More than one rule may fail, and each
rule will have an error string to be displayed with the con-
figuration option. It may be tempting to display the first error
alone, but doing so causes a recursive problem-solving
method of repairing a configuration, because as each error is
fixed, another is exposed. It is preferable to display all of the
error messages.

To reduce the screen real estate to be taken up by the error
messages, the GUI could display an error count. The first
message when selected would then expand to display the full
list of configuration errors.

Example Configuration Service Protocol Messages

Gaming Machine to Host Asynchronous Messages Con-
nect: The connection message contains the Identity of the
gaming machine, serial number, MAC address, I[P Address,
and the like. The Connect allows the host to index and remem-
ber a machine’s configuration for verification or later use. If
the host GUI is integrated with other services, this would be
the time any associations are to be made.

The Configuration Change message is generated when the
value of a configuration option has changed on the gaming
machine. This event can be generated, for example, when an
operator makes a configuration change on the gaming
machine without using the remote configuration interface.
The intent of this message is to keep the host up-to-date with

US 9,135,778 B2

61

the configuration of a gaming machine. The new name value
pairs of the configuration changes will be contained in the
message.

The Configuration Template Change message is generated
when the template format has changed. This message does
not contain the new template, and only notifies the host that
the change has occurred. The host can then request a Con-
figuration Template on its own time interval. One of the goals
of the implementation of host configurability is to avoid the
need for this message, butitis still present in case it is needed.

The Configuration Template Ready message is generated
once per connection. This event tells the host that the Con-
figuration Template can be requested, and it is believed to be
complete. Configuration Template Changes will not be gen-
erated until after this event has been sent.

The Configuration Error message is generated when an
error has occurred related to configuration. Each error is
associated with a configuration option name.

Credits: Boolean event when the number of credits on the
gaming machine becomes 0 or becomes non 0. This is used
for determining if configuration options with the restriction of
no credits on the machine can be set.

Playable: A Boolean event generated, once per power
cycle, the first time the gaming machine enters a playable
state. This is intended to tell the configuration host that the
machine has been configured to the point of being playable.

RAM Cleared: There are two Boolean events signifying
the clearing of non-volatile memory, that RAM has been
cleared since the last connection. One signifies that General
NVRAM has been cleared, and the other signifies that the one
time settables has been cleared. Generally, the message will
either contain that general NVRAM was cleared, or both.
Rarely do one time settables get cleared without general
NVRAM being cleared.

Request Response Messages: The host can query configu-
ration information from the gaming machine at any time. The
gaming machine will respond with a message dependent on
what is being requested.

Configuration Values: Name value pairs of configuration
values. Space is not wasted on the configuration parameters or
categories.

Configuration Template: The current Configuration Tem-
plate. The Configuration Template contains both the values of
the configuration options, and the parameters. The Configu-
ration Template is much larger than just the configuration
values, thus should not be used if only the configuration
values are needed.

Configuration Test Result: Results of a configuration test
set. This message defines what the success of a configuration
would be if it were to be set. If the configuration set attempt
would have generated errors, those errors are reported. If the
configuration contains no errors, no changes are actually
made to the machines configuration.

Configuration Value Set Result: Results of a configuration
set attempt. This is similar to the Configuration Test Result,
except that an error free report means that the machines
configuration has been modified. If there are any problems
with the actually implementation of the changes, they will
arrive separately and asynchronously as error messages.
Errors from the implementation of configuration options
should be rare, as the Rules are intended to avoid them.

Host to Gaming Machine—Requests

The Configuration Test is a request for values provided in
the message to be tested. The test result is the same as the
result would be with a set values call, with the exception that
the configuration of the gaming machine is not affected if the
test proves successful.

10

15

20

25

30

35

40

45

50

55

60

65

62

The Configuration Set is a request for values provided in
the message to be put to use. The reply from the gaming
machine proves a success or failure with errors. If the gaming
machine provides a success in the reply, that only signifies
that the configuration is in place, it does not mean that the
configuration is comprehensive, or that the gaming machine
is about to enter a playable state.

The Get Configuration Values gets the name value pairs of
configuration. This call should be used instead of Get Con-
figuration Template when possible to reduce unnecessary
network load. If the host already has an idea of the Configu-
ration Template, and the Get Configuration Values replies
with every name in the known template, getting the template
is probably not necessary. If the Configuration Template is
modified the host will be notified via another message, and at
that point can request the new template.

The Get Configuration Template gets the entire Configu-
ration Template, with current values.

In the Get Test Template, the host can request the test
template. The test template is a Configuration Template that
attempts to test all of the control types, and heavily tests the
rule evaluator. The host can then make a determination of the
compatibility of the server side GUI support and rule evalu-
ator. Every control type should be supported by the GUI with
the given parameters and values, and every rule should
resolve to be true, and without error.

If the test template fails, it does not mean that the remote
host configuration feature will not work. Any unsupported
configuration types can be displayed generically, and any
unsupported rules will simply reduce accuracy of configura-
tion option rules. Configurations can still be tested by sending
it to the gaming machine for test.

Messages

The Set configuration message sends configuration name
value pairs to the gaming machine to be implemented.

The test configuration message sends configuration name
value pairs to verify if the configuration is valid.

Example Exporting and Importing Configurations

Usage: The operator needs to be able to manage specific
sections of the configuration separately.

In one embodiment, the Operator may wish to frequently
change the number of lines and bet per line configuration on
abank of machines. The operator could export several accept-
able configurations of just the game settings, then later import
the configuration desired. Changes would not affect the rest
of the machine and not require recreating the configuration
each time.

In another embodiment, the Operator may have many con-
figuration standards between machines. By configuration one
machine and than exporting the machines device setup and
accounting protocol setup, the operator would have a starting
template for every machine on the casino floor. By importing
this template by default to each new machine as it arrives, the
operator could greatly reduce configuration time without los-
ing the ability to customize each machine’s configuration.

In still another embodiment, the operator may have a few,
full machine configurations he likes. By having these con-
figurations ready, new machine installations could go quickly
in comparison to recreating configurations.

In yet another embodiment, when duplicating configura-
tions from one machine to another, configurations may
include unique identifiers, such as serial numbers. The User
should be able to copy configurations from one machine to
another without duplicating unique identifiers.

Exporting

Configurations can be exported to a file. Exported configu-
rations, (with the exception of “Raw Template™) only save

US 9,135,778 B2

63

option name and value pairs. This both conserves space and
removes conflict ambiguity when they are later used.

Regarding choosing what to export, the GUI needs to allow
the operator to select what configurations to save. This can be
done in many ways. When categories are selected, all con-
figuration options within that configuration category are
assumed to be selected.

Direct Selection of GUI

Similar to how MS WORD allows line selections by mouse
clicks in the left margin, the operator can “highlight” the
configurations they wish to save. The operator should be able
to select options and categories, and neither are required to be
consecutive.

Selection By Category

The GUI may provide selection options to the operator
only after they have selected to export. The GUI would dis-
play a category tree, with no option definitions to simply and
reduce the display. This option is not as powerful as a direct
selection, but it does provide the majority of the functionality
with a simpler interface.

Export Options

When the operator chooses to export a file, they will be
offered options. Each option relates to a parameter Boolean
flag of the options being possibly saved. These options
include: Read Only, One Time Settable, Read Only With
Credits, Invisible, Unique Per Machine, Other, Raw Tem-
plate, and Quick List. By default, Other and Read Only With
Credits may be selected.

When exporting configurations to be used in other
machines, unique information would not be appropriate.
When exporting starting templates, the operator may wish to
save One Time Settable options. When exporting configura-
tion sets for future reuse on the same machine(s), One Time
Settable options would not be desired, because one time set-
table would only cause errors if later used to attempt a change
of configuration. When generating reports for configuration
counting or comparison, the Read Only and invisible options
may be useful.

When exporting for the purpose of bug reporting, the raw
template option should be used. The raw template option will
export the entire Configuration Template to file for diagnostic
purposes. If the raw template option is selected, all other
options are irrelevant.

The Quick List option overrides other options would save
the selected options, with their template definitions. A Quick
list save would NOT save categories, One Time Settable,
Read Only with Credits, Invisible, Unique options or options
Restricted to when the machine has no credits.

When Quick List or Raw Template is selected, the GUI
should gray out all other options to signity to the operator
what is going to happen. Quick List and Raw Template are
also mutually exclusive of each other.

Importing

Importing, at initial glance, is the opposite of exporting.
Instead of saving a configuration to file, you are loading a
configuration from a file. The import will have similar options
as the export option did, including: Read Only, One Time
Settable, Read Only With Credits, Invisible, Unique Per
Machine, and Others. By default, all of the above will be
selected. Selecting Unique per machine, and Invisible con-
figuration options is harmless if the imported file does not
contain any. Generally, these choices are made at export time.

Creating New Configurations

When creating a new configuration, the user opens mul-
tiple configuration files. Since configuration files may often
contain only partial configurations, this can usually be done
without conflict.

10

20

25

30

35

40

45

55

60

64

One example of a process is as follows: (1) User opens
multiple sub-configurations files previously exported. GUI
combines the opened configurations into a single list. (2) User
is presented with any conflicts, and is given options to resolve
them. Configuration is compared to a Configuration Tem-
plate. (3) User is given a category by category list of what
configurations are not covered. User completes any remain-
ing configuration. (4) User saves configuration to the gaming
machine.

In one example, a new machine arrives and needs new
configuration. The operator loads and combines the following
configuration files: (1) a configuration file that contains the
device setup; (2) a configuration file that contains the
accounting protocol for that area of the casino floor; (3) a
configuration file that has the bet configuration he likes; and
(4) a configuration file for the denominations.

The user is presented with a conflict in that both the
denominations file and the bet configuration file specify dif-
ferent default denominations. The operator makes a choice
between the two files, and sets a note for himself to go fix one
of'the configuration files later. The GUT then tells the operator
that the only configuration not covered by this selection is the
progressive configuration. Since the gaming machine is not
going to have a progressive configuration, the operator moves
on. The operator then selects the gaming machine that he is
going to configure first. The GUI loads the template from the
machine, and merges the configuration with the name value
pair that the operator has generated. The GUI finds no errors
in the new configuration, so the operator saves the configu-
ration to the gaming machine. The gaming machine is now
operational.

Example Resolving Conflicts:

There are two possible areas of conflict. The most likely
area of conflict is merging configuration files. If more than
one file contains a name value pair, and those values are in
conflict, the operator will need to choose which configuration
to use either file by file or option by option.

The second area is errors when merging with the Configu-
ration Template. If the new gaming machine has a different
template, there may be missing, or extra name value pairs. It
is normal for the newly-created configuration not to cover all
of the configuration options, but extra name value pairs will
have to be resolved by the operator on a case-by-case basis.

Example Modifying Existing Configurations

When a change in configuration is desired on an existing,
already configured cabinet, the user most likely wishes to
import the new configuration rather than hand-configure the
machine.

One example of a process is as follows: (1) The user selects
the gaming machine; (2) The current Configuration Template
is loaded; (3) The user selects a previously exported configu-
ration file that contains the desired modifications; (4) The
GUI merges the name value pairs from the saved file into the
loaded template; (5) The user is presented with any conflicts;
and (6) The user resolves any conflicts, and saves the con-
figuration to the gaming machine.

In one example, the casino operator wishes to change the
denomination and line/bet of the machines near the door for
weekend visitors. The operator has done this several times
before, and has several configurations on hand.

The operator selects the gaming machines(s). The operator
selects a configuration file. The GUI merges the configuration
file with the current configuration. The operator reviews the
denomination and bet lines configuration to ensure they have
selected the configuration they intended. The operator then
saves the configuration to the whole bank of machines.

US 9,135,778 B2

65

Quick Configuration GUI

The quick list feature is for configurations that change
often. The Quick Configuration GUI would be targeted
toward a pocket PC or a Table PC. The floor operator could
carry the device around, and change configurations and see
the results real time. The Quick Configuration GUI would not
display the full option or configurability GUI. Its prime pur-
pose is to make changes that are already set up in advance.
There will be support for displaying all control types except
category. Categories are ignored.

Quick List

A quick list of options would be a very vary small subset,
and the options would be restricted to options with no rules
defined, and not restricted to when the machines have no
credits. The GUI would start with a graphical representation
of' the casino floor. The operator can select single or multiple
machines and a quick list is opened. Quick lists are generated
by the central system as a function of exporting. For example,
a quick list may be as short as only containing volume control,
or game speed.

The advantage to this feature is that the adjustments can be
made without opening cabinets, without any downtime, and
without making players uncomfortable.

Quick Configure from File

The second function of the Quick configuration would be
to select a bank of machines, and a previously exported con-
figuration file, and then implement the changes. A list of files
could be kept for different denomination sets the casino pre-
fers, or different payback percentages.

In one example, the operator walks the casino floor and
adjusts the volumes of the machines as he walks the floor. In
another example, the operator could see a line of players
waiting to play a hot title, and could accelerate game play on
that bank of machines, without leaving the casino floor.

The operator could change the denomination and payback
percentages from the casino floor. For example, the casino
operator needs to change a bank of machines from a nickel to
a quarter, to prepare for weekend traffic. The operator could
select the bank of machines, impose the changes, and see the
results real time, right in front of him.

Referring to FIG. 34, an example sequence diagram is
shown. G2E Paytable Configuration Design Definitions are
listed below:

Allowed Games Combos: This is largest list of combos.
The Allowed Game Combos are combinations that may be
configured and made available.

Available Games Combos: Combinations that have been
configured to be available to the host. This is the list that the
BOB host can choose from to activate.

Active Games Combos: Combinations that have been acti-
vated. Activated games are games that the player has an
opportunity to play. They can usually be chosen through
either a menu system presented to the player, or though a
denomination graphic toggle.

Sequence Diagram Description:

Get Game Combos: This message asks the EGM for all
available game combinations.

0 Game Combos: This message is the response to a Get
Game Combos message. After NVRAM clear, the EGM will
report 0 game combos. (It will also report 0 themes, pay
tables, and denominations.) The EGM requires a partial con-
figuration before there are any combinations available.

Get Configuration AllowedGameCombos: The message is
called “getOptionList”. The parameters of this message allow
the host to request a specific group of configuration options.

deviceClass="“processor”

devicel D=0

10

20

25

30

40

45

50

55

60

65

66

optionGroupld="“balAllowedGameCombos”

optionID="all”

This message responds with the Theme list, and each
themes-allowed paytables and denominations. The EGM will
respond with all of the options within the balAllowedGame-
Combos group. Within this group there is always an option
with the optionID of “ThemeList”. This lists all of the game
themes allowed by the EGM. For each theme in the list, there
will also be a like named optionld containing the themes list
of paytables, and the denominations for those paytables.

The format for the value may be defined as follows:

BALallowedGameCombos Syntax

Note that the syntax does not allow for white space.

allowedGameCombos::=allowedGroup{;allowedGroup }

Note: allowed groups are separated by semicolons.

allowedGroup::=paytable{ paytable}:denomination{,de-
nomination}

paytable::=allowedPaytableCharacter {allowedPaytable-
Character}

allowedPaytableCharacter::=letter I digit 1. %

letter::=upper case_letter I lower_case_letter

denomination::=denomChoice{,denomChoice }
denomChoice::=denomRange I denom Value
denomRange::=denom Value-denomValue
denomValue::=digit {digit}

Example:

90.05% A,95% A: 1-500;94% A,97% A: 1-5,10,25,50,
100==allowedGroup;allowedGroup

First Allowed Group:

90.05% A,95% A: 1-500==paytable,paytable:denomina-
tion

First Paytable in Group:

90.05%A==allowedPaytableCharacter{allowedPaytable-
Character} s(allowed char followed by 6 allowed chars)

Second Paytable in Group (After Comma):

95%
A==allowedPaytableCharacter{allowedPaytableCharacter}
(allowed char followed by 3 allowed chars)

Denomination (after colon): 1-500==denomRange

Second Allowed Group:

94% A,97% A: 1-5,10,25,50,100==paytable,paytable:de-
nomination

First Paytable in Group:

94%
A==allowedPaytableCharacter{allowedPaytableCharacter} ,
(allowed char followed by 3 allowed chars)

Second Paytable in Group (After Comma):

97%
A==allowedPaytableCharacter{allowedPaytableCharacter}
(allowed char followed by 3 allowed chars)

Denomination (After Colon):

1-5, 10, 25, 50, 100==denomRange {,denomValue} ,(one
denomRange followed by 4 denomValue)

A real world example from the gaming show would have a
name of

<bob:optionitem
bob:currentValue=“PokerDoubleBonus! 00a,
PokerDoubleBonus92a,
PokerDoubleBonus94a,
PokerDoubleBonus96a,
PokerDoubleBonus97a:
1-3,5,10,15,20,25,50,
100,200,500,1000,2500,

5000,10000”
bob:optionName=“PokerDoubleBonus”
bob:optionld="“PokerDoubleBonus™ bob:minLength="0"

US 9,135,778 B2

67

-continued

bob:defaultValue="«

bob:canModRemote="“true” bob:canModLocal="true”
bob:maxLength="25"

bob:optionType="“string”

>

(Actual xml will have no line breaks in the currentValue
field.)

Also in the balAllowedGameCombos group ID are the
game slots. The number of game slots is under the control of
the EGM and is set at compile time. If the host wishes to
reduce the size of messages, the EGM could specifically
request the theme list optionID, and then specifically request
the optionIDs for each theme. This would avoid receiving the
information for the game slots.

Example Set Configuration of Three Game Slots

In this example three game slots are being configured.
More or fewer could be configured at once. The message here
is defined in section 1.17 of version 0.12 of the BOB configu-
ration class document. The host would configure three game
slots with a theme, pay table and denomination. The host
could optionally set the active flag at this point, but that
functionality is duplicated within the processor class. The
time when this feature is most useful is if the host is recover-
ing a configuration from a previous execution of the game, in
which case the active game list would be recoverable via
configuration.

Change Status

In response to a Set configuration change, the EGM will
reply with a status, and report any errors as applicable. In
2005 G2E show code, this response was hard-coded and
ignored.

Authorize Changes of Three Game Slots

If not used in the 2005 G2E show code, this message
described in section 1.19 of version 0.12 of the BOB configu-
ration class document would cause the changes to take effect.

Change Status

Again, in response to the authorize changes message, a
status message would be sent back to the host, describing any
errors as applicable. This was not exercised in the 2005 G2E
show.

Get Game Combos

Now that the EGM has been configured with (in this case
three) game slots, the Get Game Combo message will be able
to retrieve a list of combos that can then be activated.

Return with Three Combos

The EGM will respond with the three game combinations
that have been configured.

Activate Game Combos

Section 5.19 of version 1.1.13 of the BOB Protocol docu-
ment.

The host can now choose to activate one or more of the
game combinations. At the moment at attempt to activate O
game combinations will be ignored. If a currently active
combo is not in the list requested to be activated, the EGM
will disable the combination.

Status

As a status message the GameCombos reply is sent to the
host. The host can tell from this message if the activation of
the requested game combos was a success.

Example Option XML definitions (part of Get Options
response message)

10

15

20

25

30

35

40

45

50

55

60

65

68

<bob:optionGroup
bob:optionGroupld="balAllowedGameCombos”

bob:optionGroupName=“Allowed Game Combos”

>
<bob:optionitem
bob:currentValue="*PokerDoubleBonus™”
bob:optionName=“Theme List”
bob:optionld="“ThemeList”
bob:minLength="0"
bob:defaultValue="«
bob:canModRemote="true”
bob:canMod Local =“true”
bob:maxLength="25"
bob:optionType=“string”/ >
<bob:optionitem
bob:currentValue=“PokerDoubleBonus100a,
PokerDoubleBonus92a,
PokerDoubleBonus94a,
PokerDoubleBonus96a,
PokerDoubleBonus97a:
1-3,5,10,15,20,25,50,
100,200,500,1000,2500,
5000,10000”
bob:optionName=“PokerDoubleBonus”
bob:optionld="“PokerDoubleBonus™
bob:minLength="0"
bob:defaultValue="«
bob:can Mod Remote="true”
bob:can Mod Local =“true”
bob:maxLength="25"
bob:optionType="“string”
>

</bob:optionGroup>

<bob:optionGroup
bob:optionGroupld="balGameCombol”
bob:optionGroupName=“Game Combo 1 >
<bob:optionitem
bob:optionHelp="Combination Theme”
bob:currentValue="PokerDoubleBonus”
bob:optionName=“Game Theme”
bob:optionld="“GameTheme”
bob:minLength="0"
bob:defaultValue="
bob:canModRemote="true”
bob:canModLocal="true”
bob:maxLength="25"
bob:optionType="“string”

>

</bob:optionitem>

<bob:optionitem
bob:optionHelp="Combination Paytable”
bob:currentValue="“PokerDoubleBonus96a”
bob:optionName="“Paytable”
bob:optionld="Paytable”
bob:minLength="0"
bob:defaultValue="«

bob:can Mod Remote="true”
bob:canModLocal="true”
bob:maxLength="25"
bob:optionType="“string”

>

</bob:optionitem>

<bob:optionitem

bob:optionHelp="Combination Denomination”

bob:currentValue="20"

bob:optionName=“Denomination”

bob:optionld="“Denomination”

bob:defaultValue="

bob:can Mod Remote="true”

bob:canModLocal="true”

bob:optionType=“integer”

/>

<bob:optionitem

bob:optionHelp="Game combination is/is not
available for play flag”

bob:currentValue="1"

bob:optionName=“Active”

bob:optionld="Active”

bob:defaultValue="

bob:canModRemote="true”

bob:canModLocal="true”

US 9,135,778 B2

69

-continued

bob:optionType="“Boolean”
/>
</bob:optionGroup>

Example Super Config Game API Software Design

The game applications need to have a clean method of
accessing SuperConfig options in an organized fashion. The
game needs to be able to statically define configuration
options in a form that the OS can manage with game combos
and multi-theme situations. Options should be definable at the
EGM level, the game theme level, and per combination
instance. The game also needs to be restricted from intention-
ally or unintentionally accessing OS configuration options.
This is both for the purpose of avoiding naming conflicts and
avoiding backward compatibility issues due to undocu-
mented option APIs.

The new API Methods allow for the game to map configu-
ration options to game combinations. A new parameter will
be added to Server’s client handles. Each client handle will
identify itselfas a game or not. Additionally, game clients will
not be given access to any configuration options without an
Available to Game attribute set to true.

GameComboStatus is an object incorporated within Super-
ConFig. This module may be responsible for mapping cat-
egory strings to combos and combos to category strings. Calls
to the new GetCategoryFromCombo and GetComboFrom-
Category functions will then use this module to generate their
results. GameComboStatus may also be responsible for
maintaining each game client’s registration of game-related
configuration options. As options are created and destroyed,
GameComboStatus will register and unregister game clients
per the information they provide via 1AmGame calls.

Configuration Server may have functionality to allow con-
figuration options to be removed. As game combos are cre-
ated and destroyed, their configuration options also need to be
created and destroyed.

Example API System Design

New API calls:

virtual std::string GetCategoryPrefixForSlot(int SlotID)

This method gets the string prefix for configuration options
relating to a specific SlotID. This information is also provided
in SlotCombo, but this method is smaller and faster. This is a
blocking request to game manager.

virtual int GetActiveSlotIDforGameCombo(std::string

Theme, std::string Paytable, money denomination)

Only one Theme/Paytable/Denom can be active at once.
This returns the slot ID for the active combo. There may be
inactive combos with a matching combination, but they will
not be returned with this function. A negative one return value
means that the combination was not found in any active slot.

typedef void (*SlotComboChangeHandler)(std::

vector<int>ConfiguredSlotIDs)

ComboChangeHandler is given a vector of slotiD’s that
have valid theme, paytable and denomination combinations.
Information is not provided on which ones have changed,
which ones no longer exist, or which ones are new. The caller
must keep their own records for this.

virtual int32 RegisterForSlotComboChanges (SlotCom-

boChangeHandler)

This call registers for a callback notifications of Slot Com-
bination changes.

virtual std::vector<int>GetAllSlotIDsForPaytable (std::

string Theme, std::string Paytable)

70

This method returns a vector of slotIDs. Each SlotID con-
tains a configuration matching the requested theme and pay-
table. This is a blocking call to Game Manager.

Class SlotCombo

5 Structure of information related to a SlotCombo. This class
contains the following information:

Paytable of a given slot combo:

std::string paytable;

Theme of a given slot combo:

std::string theme;

Denominations within this slot that are active:

std::vector<money>activeDenoms;

Denominations within this slot that are inactive:

std::vector<money>inactiveDenoms;

The slot ID of this combination:

int slotID;

Super Config category prefix for combo options related to
this slot:

std::string slotCategoryPrefix;

Super Config category prefix for options related to the
theme of this slot combo:

std::string themeOptionsPrefix;

Super Config category prefix for options global to all
games:

std::string gameOptionsPrefix;

virtual SlotCombo GetSlotComboBySlotID(int SlotID)

Requests a SlotCombo structure for the given SlotID.

Modified Existing API calls

Connect 0

The existing Connect call will remain. The OS will use a
derived interface class that will append additional informa-
tion identifying the client as an OS client.

FUNC-000 New Game API (Based on Existing SuperCon-
fig Library)

A new API is created in libsuperconfig, it is called Game-
Client (.cpp and .h).

FUNC-001 Move Existing Game API to OS/LIBRARIES

The Config Client interface will move to the OS library,
and the libsuperconfig in the game API will get a new inter-
40 face called game client. The difference will be that the Config
Client will pass extra information to the OS, identifying itself
as an OS client, while the game client will not. This will allow
the Super Config system to identify which clients have which
privileges.

FUNC-002 SuperConfig Identifies Game Configuration
Clients, separate from other clients.

The connect function of the Config Client interface will
send information to the config server identifying it as an OS
client. This will allow the config server to make later restric-
50 tions and/or distinctions.

FUNC-003 New API Function GetCategoryPrefixForSlot
(int)

This new function will get the category prefix for a given
slot ID. This prefix can then later be used to access Super

55 Config options for the given slot.

FUNC-004 New API Function GetActiveSlotIDForGame-
Combo(string, string, money)

This new function gets the slot ID for a given combination
of theme, paytable, and denomination. Since only one com-

60 bination of all three can be active at any time, there will
always only be one slot ID for it.

FUNC-005 New API Function RegisterForSlotCombo-
Changes(handler) This function registers a handler to be
called if the configuration of Slot IDs and their combos ever

65 changes.

FUNC-006 New API Function GetAllSlotIDsForPaytable

(std::string, std::string)

10

15

20

25

30

35

45

US 9,135,778 B2

71

This function returns a vector of slot IDs. It returns one slot
1D for every slot containing the provided theme and pay table.

FUNC-007 New API Function GetSlotComboBySlotID
(int)

This function returns a structure of details for a given slot
ID. This details include theme, paytable, denomination, vec-
tor of available denoms, vetor of active denoms, slot category
prefix, theme category prefix, and slot category prefix.

FUNC-008 As combos are created, options are automati-
cally registered with game clients.

Game Combo Options will be defined in a game config file.
As combinations are created and/or destroyed, the OS will be
responsible for updating configuration server with new or
removed options.

FUNC-009 Restrict Game Config client access to OS
Options

When a configuration client has been identified as a game
client, configuration access will be filtered by game access
attributes. Options can have one or both of two attributes. One
attribute will give the game read access to an option. The
second will give the game write access to an option.

FUNC-010 Automatically register EGM level Game Con-
figuration Options Clients that have identified themselves as
interested in specific game themes will automatically be reg-
istered for any combination using that theme(s), and for
theme level options of said themes.

FUNC-011 Automatically register Game Combo Options
as Game Combos are created.

When a new game combination is created, the OS will
automatically create combo options from game configuration
files, and then register all configuration clients that have iden-
tified themselves interested in the theme of the combo.

FUNC-012 Per-Combo options will be defined and
selected based on the Theme of the combination.

Each pay table may identify per combo configuration
options. When a combination is created, the OS will use the
configuration file from the pay table of the combo to register
configuration options.

FUNC-013 Combo Options and EGM options to be
defined in Game Configuration files.

The game application will not need to generate options
runtime. The OS will retrieve options from a configuration
file residing on the game media, and this will help automate
the configuration option creation process.

FUNC-014 New Function QuickGetOption, to help auto-
mate the process of getting a configuration option.

QuickGetOption will allow the game to get an option value
directly from its category and name, simplifying code.

FUNC-015 New Function GetOptionsReadableByGame O

This Diagnostic and development function returns all
options that are readable by the game client.

FUNC-016 New Function GetOptions WritableByGame 0

This Diagnostic and development function returns all
options that are writable by the game client.

Example Slotcombo Design

Structure of information related to a SlotCombo: class
SlotCombo

public:

std::string paytable; // Paytable of a given slot combo

std::string theme; // Theme of a given slot combo std::vector<money>
activeDenoms; // Denominations within this slot // that are active.
std::vector<money> inactiveDenoms; // Denominations within this slot
// that are inactive

int slotiD; // The slot ID of this combination.

10

15

20

25

30

35

40

45

50

55

60

65

72

-continued

std::string slotCategoryPrefix; // Super Config category prefix for
// options related to this slot combo
std::string themeOptionsPrefix; // Super Config category prefix for
// options related to the theme of this slot combo std::string
gameOptionsPrefix;

// Super Config category prefix for

// options global to all games

1

GlobalConfigurables.xml

The /games directory will optionally contain GlobalCon-
figurables.xml. Using the SuperConfig xml format, the file
will define configuration options that are global to the EGM,
and not tied to any specific game theme or game combination.

ThemeConfigurables.xml

Each game theme directory will optionally contain Theme-
Configurables.xml. Using the SuperConfig xml format, the
file will define configuration options that are to be tied to the
theme.

PaytableConfigurables.xml

Each game pay table directory will optionally contain Pay-
tableConfigurables.xml. Using the SuperConfig xml format,
the file will define configuration options that are associated to
individual configuration combinations of the same pay table.

The game applications need to have a clean method of
accessing SuperConfig options in an organized fashion. The
game needs to be able to statically define configuration
options in a form that the OS can manage with game combos
and multi-theme situations. Options should be definable at the
EGM level, the game theme level, and per combination
instance. The game also needs to be restricting from inten-
tionally or unintentionally accessing OS configuration
options. This is both for the purpose of avoiding naming
conflicts and avoiding backward compatibility issues due to
undocumented option APIs.

Example Functional Requirements

Game configuration client will be given access to OS
options only in a controlled, intentional, and per option
method.

Read access and write access will be granted individually
to the game application.

Game configuration options will automatically be regis-
tered by the OS as needed.

Game configuration client objects will be automatically
registered for all game related configuration options.

Game configuration objects will be able to query connec-
tions between option categories and game combinations
in both directions.

Game configuration objects will be able to identify them-
selves to one game theme, allowing the SuperConfig
server to only register them for configuration options
related to that theme.

Changes of options within a game slot will be directed
automatically to configuration clients that have identi-
fied themselves with the matching theme.

US 9,135,778 B2

73

Example Functional Requirements

74

Requirement # Capability or Description

Reference #

Test Case #

FUNC-000 New Game API (Based on Existing Super
Config Library)

FUNC-001 Move Existing Game API to OS/LIBRARIES

FUNC-002 Super Config Identifies Game Configuration
Clients, separate from other clients.

FUNC-003 New API Function
GetCategoryPrefixForSlot(int)

FUNC-004 New API Function
GetActiveSlotlDForGameCombo(string,
string, money)

FUNC-005 New API Function
RegisterForSlotComboChanges(handler)

FUNC-006 New API Function GetAllSlotIDsForPaytable
(std::string, std::string)

FUNC-007 New API Function
GetSlotComboBySlotlD(int)

FUNC-008 Automatically register Theme level game
options.

FUNC-009 Restrict Game Config client access to OS
Options.

FUNC-010 Automatically register EGM level Game
Configuration Options.

FUNC-011 Automatically register Game Combo Options
as Game Combos are created.

FUNC-012 PerCombo options will be defined, and
selected based on the Theme of the
combination.

FUNC-013 Combo Options and EGM options to be
defined in Game Configuration files.

FUNC-014 New Function QuickGetOption, to help

automate the process of getting a
configuration option.

Example SuperConfig Operator Menus
The purpose is to provide a complete configuration inter-

face to a host configuration system. In one embodiment, the 35

host configuration system will utilize the GSA BOB Protocol.
Each configuration option and all version information may be
available to the host system for reading. Where functionally
possible, configuration options will also be settable by the

host configuration protocol. The goal is to reduce operator 40

activity at an EGM to a minimum. Installations and NVRAM
clear processes should require minimum operator activity at
the EGM, if any. A secondary goal is to provide one step setup
of'an EGM. Ideally, the host system should be able to send a

single configuration set message to place the EGM into a 45

playable state from initial connection to the host protocol.
An added benefit resulting from this implementation is
remote inventory and analysis. Host systems will be able to
query, survey, and monitor what software, firmware, and con-
figurations are active and make yield studies, comparing these

configurations to game play activity. With this information, a
casino operator can effectively build a smart casino manage-
ment system that can provide recommendations based on
prior historical data and tracking.

An example of Functional Requirements are as follows: (1)
All setup functionality available from the EGM shall be made
available via Super Config, with the exception of Touch
Screen setup. (2) Version information will be available as read
only options via Super Config. (3) Jurisdiction settings will be
available as read only options via Super Config. (4) The EGM
will still be responsible for validating configuration changes.
(5) The EGM will not allow remote configuration to bypass
any restriction, rule, or check, currently enforced by operator
menus or jurisdiction chip settings. (6) Operator menus at the
EGM will appear and function exactly the same from the
user’s point-of-view. (7) No changes in Operator Menu docu-
mentation or instruction guides will be needed.

Example Functional Requirements

Requirement #

Capability or Description Reference # Test Case #

MENU-000

MENU-001

MENU-002

MENU-003
MENU-004

MENU-005

Add Diagnostics/Version Information
(Read Only) to Super Config

Add information contained in Diagnostics/
Jurisdiction Limits (Read Only) to Super
ConFig. (May not appear in the same
format)

Add information contained in Diagnostics/
Jurisdiction Bit Codes (Read Only) to Super
Config. (May not appear in the same
format)

Add Setup/Sound Setup to Super Config
Add Setup/Machine Setup/Machine Info
Setup to Super Config

Add Setup/Machine Setup/Device Setup
to Super Config

US 9,135,778 B2

75

-continued

76

Requirement # Capability or Description

Reference # Test Case #

MENU-006 Add Setup/Credit Setup to Super Config

MENU-007 Add Setup/Credit Setup/Denom Setup to
Super Config

MENU-008 Add Setup/Credit Setup/Multi-Game
Setup to Super Config

MENU-009 Add Setup/Credit Setup-Submenus to
Super Config

MENU-010 Add Setup/Comm Setup/Serial Setup to
Super Config

MENU-011 Add Setup/Comm Setup/Serial Setup -
Submenus to Super Config

MENU-012 Add Setup/Comm Setup/IP Setup (Read
Only) to Super Config

MENU-013 Add Setup/Voucher Setup to Super Config

MENU-014 Add SAS Config Menus to Super Config

MENU-015 Add SDS Config Menus to Super Config

MENU-016 Add SDG Config Menus to Super Config

MENU-017 Add AFT Config Menus to Super Config

MENU-018 Add Mikohn Config Menus to Super
Config

MENU-019 Add Internal Progressive Menus to Super
Config

MENU-020 Add Group Play Progressive Menus to
Super Config

MENU-021 Add MAPS Progressive Menus to Super
Config

Human Interface Requirements

The operator menus within the EGM should function and
appear exactly as they did before any Super Config changes. 30

Performance Requirements

There shall be no visible performance hit when using the

Documentation Requirements

interfaces.
Compliance Requirements

Option Help fields for each configuration options will be
filled out to provide runtime documentation to Host system

operator menus at the EGM.
Upgradability Requirements

Changes to operator menus will not cause previously
released game titles to malfunction or break, but configura-
tion options driven by game applications will not be sup-

35

Supporting host driven configuration will not bypass any
jurisdiction limit, EGM limit, or operator menu driven limit.
Using Super Config to configure a gaming machine will not
allow the casino operators to bypass any rules or laws cur-
rently enforced via the operator menu interface.

Example Configuration Technical Requirements—Func-

ported via Super Config without game modifications.

tional Requirements

Requirement# Capability or Description Reference # Test Case #

CONF-001 Minimize Operator intervention after RAM clear 4.1

CONF-002 Save Serial Number, TCP/IP information to EEPROM 4.1a

CONF-003 Save Protocol Selection and connection information to 4.1b
EEPROM

CONF-004 Enable DCHP and I-Button stored serial number 4.1c

CONF-005 Activation of a Host Interpreter protocol shall not 4.1.1
require any configuration not specifically needed for
the Configuration connection.

CONF-006 Host Interpreter protocol shall connect before requiring 4.1.1a
configuration of devices, denominations, machine
control, voucher configurations, and game
configurations.

CONF-007 Auto-Reconnect after NVRAM clear 4.1.1b

CONF-008 Serial Number Shall be saved to EEPROM 4.1.2

CONF-009 IP Address Shall be saved to EEPROM 4.1.2a

CONF-010 Selection and activation of Host Configuration protocol 4.1.2b
will be saved to EEPROM

CONF-011 Protocol Specific Data Block will be saved to 4.1.2¢
EEPROM

CONF-012 Allow duplication of configuration from one machine 4.1.2d
to another.

CONF-013 Host GUI will allow operator to save configurations to 4.13
file(s).

CONF-014 Host GUI will allow operator to load and combine 4.1.3a
configurations from file(s)

CONF-015 OS Configuration option names will not change from 4.1.3b
instance to instance.

CONF-016 A configuration option shall be identifiable by its 4.1.3¢
Name.

CONF-017 A configuration option shall be settable by its Name. 4.1.3d

US 9,135,778 B2

77

-continued

Requirement # Capability or Description Reference # Test Case #

CONF-018 A set of configuration options shall be settable in whole 4.1.3e
as a single step or process.

CONF-019 Automated reconfiguration of RAM cleared machines 4.1.3f

CONF-020 Gaming machine shall automatically report to the host 4.1.3g
that a RAM clear has been preformed.

CONF-021 Host GUI shall provide option to automatically 4.1.3h
reconfigure a given gaming machine upon its report of
RAM clear.

CONF-022 The Host GUI will allow the operator to select a 414
configuration to be automatically downloaded to the
gaming machine after its next RAM clear.

CONF-023 Starting with only the configuration saved in EEPROM, 4.1.4a
the gaming machine will accept and be able to
successfully configure all configuration options in a
single step.

CONF-024 Allow partial configuration 4.1.4b

CONF-025 The Host GUI will allow the operator to configure a 4.1.5
subset of configuration options.

CONF-026 The gaming machine will accept partial, yet valid, 4.1.5a
configurations.

CONF-027 Allow configuration to be read back to the host 4.1.6

CONF-028 Gaming machine shall report its current configuration 4.1.6a
pairs at the request of the Host interface.

CONF-029 Allow Configuration Template to be read from the 4.1.7
gaming machine

CONF-030 Gaming machine shall report its current Configuration 4.1.7a
Template at the request of the Host interface

CONF-031 Allow modification of configuration run time. 4.1.8

CONF-032 Gaming machine can be configured more than once, 4.1.8a
with the exception of read only configuration options,
and one time settable configuration options.

CONF-033 Allow custom game configuration. 4.1.9

CONF-034 Creation of configuration options can be done by the 4.1.9a
configuration client.

CONF-035 Game configuration options do not have to be 4.1.9b
predetermined at OS Compile time.

CONF-036 Game configuration option names not be restricted by 4.1.9¢
the options the OS has created.

CONF-037 Changes during game play. 4.1.10

CONF-038 Rules will contain a flag siguifying if they can or can 4.1.10a
not be configured when the gaming machine has credit.

CONF-039 Gaming machine will not accept a configuration that 4.1.10b
contains changes restricted to when the machine has no
credits, while the machine has credits.

Verification
Requirement # Capability or Description Reference # Test Case #

VERF-001
VERF-002

VERF-003
VERF-004
VERF-005
VERF-006
VERF-007
VERF-008

VERF-009
VERF-010

VERF-011

VERF-012
VERF-013

Feedback of configuration success

“Configuration Success” shall be equivalent to be a rule
check pass of a configuration request.

Configuration Rules shall be sufficient to accurately
predict the validity of a configuration change.
Configurations that pass Rule checks will always be
accepted.

Validity pre-check

Modular Rule Evaluator (Dynamically Linked)
Complete Rule evaluation before configuration changes
Test rules created to exercise the rule evaluator. Test
rules will exercise every key word and function.
Invalid Configurations

Invalid Configurations (Fail rule checker) denied in
whole before any change occurs.

Reporting of Invalid configuration attempt reported to
Host Interpreters

Avoid and prevent Configuration Failures

Rules written accurately enough that they can
accurately be used to determine if a configuration is or
will be valid.

4.2.1
4.2.1a

4.2.1b
422
422
42.2.a
4.2.2b
4.2.2¢

423
4.2.3a

4.2.3b

424
4.2.4a

78

US 9,135,778 B2
79

Reporting
Requirement # Capability or Description Reference # Test Case #
REPT-001 Development Recreation of Field configuration 43.1
REPT-002 Able to download an entire set of configuration options 4.3.1a

including invisible and read-only options for use in
problem recreation.

REPT-003 Ability to upload in a debug development environment 4.3.1b
a complete set of options received from the field.

REPT-004 Configuration Reporting and surveying 432

REPT-005 Ability to create subsets from configurations containing ~ 4.3.2a
only specific items of interest

REPT-006 Internationalization and Localization Requirements 4.4

REPT-007 Human Interface Requirements 4.5

REPT-008 Performance Requirements 4.6

REPT-009 Upgradeability Requirements 4.7

REPT-010 Reliability Requirements 4.8

REPT-011 Documentation Requirements 4.9

Specific Phase I Configuration Options

Requirement # Capability or Description Reference # Test Case #

OPTN-001 Configuration Category Game Sounds
OPTN-002 User Feedback, Multiple Choice, High, Med-High,
Med, Low-Med, Low

OPTN-003 Game Play, Multiple Choice, High, Med-High, Med,
Low-Med, Low

OPTN-004 Attack Mode, High, Med-High, Med, Low-Med, Low,
OFF

OPTN-005 Configuration Category User Feedback Definitions

OPTN-006 Play Buttons, checkbox group

OPTN-007 Operator Buttons, checkbox group

OPTN-008 Bill in Sounds, Boolean enabled/disabled

OPTN-009 Bill in Sounds, Multiple choice sound names

OPTN-010 Coin in sounds Boolean enabled/disabled

OPTN-011 Coin in sounds, Multiple choice sound names

OPTN-012 Jackpot Sounds, Boolean enabled/disabled

OPTN-013 Jackpot Sounds, Multiple choice sound names

OPTN-014 Instructional Vocals, Boolean enabled/disabled

OPTN-015 Instruction Vocals, multiple choice sound names

OPTN-016 Configuration Category Game Play Definitions

OPTN-017 Real Spin duration, multiple choice 2.5 s, 2.85,3.2 s,
3.5s,4.2s.

OPTN-018 Win Roll Up speed, multiple choice, slow, med, fast,
scaled A, scaled B

OPTN-019 Bonus Features, Read only Text Spring
OPTN-020 Configuration Group Attract Definitions
OPTN-021 Attract Music, Boolean, enabled/disabled
OPTN-022 Attract Music, Multiple choice, names
OPTN-023 Configuration Category Operator Menu
OPTN-024 Configuration Category Limits
OPTN-025 Credit Limit, number

OPTN-026 IRS Limit, number

OPTN-027 Jackpot Limit number

OPTN-028 Bill Limit

OPTN-029 Bill Reject Limit

OPTN-030 Configuration Category Voucher Data
OPTN-031 Voucher Location, string

OPTN-032 Voucher Address, string

OPTN-033 Configuration Category Identification
OPTN-034 Asset Number, one time settable, number
OPTN-035 Serial Number, read only, number
OPTN-036 Configuration Category Denomination
OPTN-037 Denomination, Multiple choice, allowed values

Internationalization and Localization Requirements

Requirement # Capability or Description Reference # Test Case #
T18N-001 Not a replacement for the JTurisdiction Chip 4.4
T18N-002 Does not override configuration options within the 4.4b

Jurisdiction Chip

80

US 9,135,778 B2

81

-continued

Requirement # Capability or Description Reference # Test Case #

T18N-003

Does not allow configuration options in violation of ~ 4.4b
Jurisdiction Chip settings.

Human Interface Requirements

Requirement # Capability or Description Reference # Test Case #
HUMI-001 Not a replacement for the Operator Menu 4.5
HUMI-002 Use of Host Configuration does not exclude or prevent 4.5a
Operator Menu configuration and usage.
HUMI-003 Configuration changes in Operator Menu will be visible ~ 4.5b
in Host Configuration.
HUMI-004 Configuration changes via Host Interpreter will be 4.5¢
visible in Operator Menu.
Performance Requirements
Requirement # Capability or Description Reference # Test Case #
PERF-001 Configuration activity will not cause errors in the video 4.6
display. (Errors would include reel spin slow down,
glitch, or jumping graphics.)
PERF-002 Configuration activity will not cause loss in host 4.6a
communications unless required to perform a specific
configuration change.
Upgradeability Requirements
Requirement # Capability or Description Reference # Test Case #
UPGR-001 New configuration options (as they are developed) will 4.7
automatically report and define their existence with the
host interpreter, thus not requiring (or excluding)
outside version control of configuration options.
UPGR-002 Rule checker will be dynamically linked for easy 4.7a
replacement on both hosts and gaming machines.
Reliability Requirements
Requirement # Capability or Description Reference # Test Case #
RELI-001 Configuration changes should be enforced either witih 4.8
all or nothing after a power hit mid-configuration.
RELI-002 In the event of a power cycle, configuration options will ~ 4.8a
receive their new values on power up as the options are
registered.
RELI-003 Configuration shall be saved in NVRAM. 4.8b
RELI-004 NVRAM will be defragmented over time. 4.8¢
RELI-005 NVRAM modification will not require re streaming all 4.8d
configurations to NVRAM each cycle.
RELI-006 The size of NVRAM block claimed will be 4.8¢
configurable.
RELI-007 The size of the NVRAM block claimed will support 4.8f

sizes greater than 64K, (greater than 16 bit offsets), yet
be property optimized when running less than 64k (16
bit offsets)

82

US 9,135,778 B2
83 84

Documentation Requirements Example Communications Interfaces
Requirement # Capability or Description Reference # Test Case # The Download and Conﬁguration Subsystem will use the
. . 5

DOCU-001 Configuration options shall 4.9 G2S, HTTP, HTTPS, TCP, and SOAP protocols to commu-
be self-descriptive and
match terminology already nicate with EGMs and other system components.
present in the Operator
Menu

Definitions, Acronyms, and Abbreviations—Glossary

Term, Acronym, Abbreviation Definition

Business Logic Layer Tier The Business Logic Layer is comprised of the Download and
Configuration Windows Services which are responsible for
implementing the Business Logic of the system.

Data Access Layer Tier The Data Access Layer is comprised of Web Services which expose
methods for interacting with the Data Tier.
Database SQL Server 2005 returns information based on the results of

retrieving data from the following databases XYZ Core XYZ
Configuration XYZ Download XYZ Activity XYZ Schedule.

Database Web Services These are the web services that will be able to be re-used by other
GUI and Service Applications in the XYZ Live System.

EGM Electronic Gaming Machine

EGM Tier The Data Tier is comprised of Electronic Game Machines (EGM) and

other configurable components like iView and Game Controllers.

Electronic Gaming Machine (EGM) The devices this project is targeted at.

G2S (Game to System) The G2S (Game to System) protocol provides a messaging standard,
using XML, for communications between gaming devices (such as
game software, meters, and hoppers) and gaming management
systems (such as progressives, cashless, and accounting).

G2S Download Protocol The G2S download protocol will provide a standardized protocol to
manage the downloaded content on all G2S compliant EGM from all
G2S compliant host systems.

G2S Engine This service will receive G2S messages directly from the EGM and
dispatch them to the XYZ Live Service based on the message
component type.

G2S Engine Tier The G2S Engine Tier is comprised of the G2S engine components. Its
job is to send and receive G2S protocol messages to and from EGM
and other configurable devices. It is also responsible for the
packaging and unpackaging of the internal system messages and G2S
protocol messages.

G2S Message Command messages sent to an EGM, to update or configure the
EGM.
G2S optionConfig Protocol The G2S optionConfig protocol will download options available from

within and EGM. The SDDP server will maintain all download
software packages in a secure library with a required number of
secure backups as defined by the jurisdiction

iView XYZ proprietary device for player touch point services. It is used to
display marketing and player tracking information. While not
currently capable of “gaming”, it likely will be downstream, so it is
treated herein as an EGM.

module A manufacturer-defined element that is a uniquely identifiable unit
within the EGM. For example: A module can be an operating system,
or a game theme, firmware for a printer; or, a module may be a single
WAV sound file that is shared by other modules.

Operator Menu The menu interface on an EGM accessible through the Attendant key
on the exterior of the cabinet, or the test button on the cabinet
interior.

Package A manufacturer-defined element that can be thought of as a single

file, which contains:
An optional download header that contains information about the
package payload and
The package payload, with the payload being a ZIP file, TAR file,
an XML configuration file, a single BIN file, or any file format
that makes sense. The point is that specific format of the payload
is of no interest to the command and control of the transfer.
Presentation Tier The Presentation Tier is comprised of the XYZ Control Panel
application. The XYZ Control Panel application is the Graphical
Interface through which the Download and Configuration portion of
the XYZ Live system is managed.

SDDP Server Will maintain all download software packages in a secure library
with a required number of secure backups as defined by the
jurisdiction

Software download The ability to send packages between a Software Download
Distribution Point and one or more EGMs.

Super Config Super Config is a project implementation that provides new

functionality to both internal implementation and host configuration
communications.

US 9,135,778 B2

85

-continued

86

Term, Acronym, Abbreviation Definition

XYZ Control Panel (BCP)

This smart client encapsulates all the functionality to support the

command and control portions of the download and configuration

features of the project.
XYZ Live Services
the Business Logic of the system.

These are the windows services which are responsible for executing

License Manager

Referring now to FIG. 35, there is shown a schematic
diagram illustrating the topology of the disclosed license
management method. As shown, a plurality of gaming
devices 10 are located at nodes of a local site operator 100,
which is networked to a central host 200 through a secure
Ethernet connection 300. The local site operator 100 com-
prises a local license manager 110, a local software license
database 120, a local distribution center 130, a billing proxy
134, and a system management point console 140. The central
host 200 comprises its own central license manager 210, a
central software license database 220, a central distribution
center 230, and a billing manager 240. Third Parties (3"
Party) 400 are networked to the central distribution center 230
through a secure Ethernet connection, allowing for two-way
communication. The Regulator 500 is also networked to the
central distribution center 230 through a secure Ethernet con-
nection, also allowing for two-way communication via this
path. A System Operator 600 communicates one-way to the
billing manager 240 and the central software license database
220 through a secure Ethernet connection. The System
Operator is any entity that interfaces with the license man-
agement system, and is responsible for the creation of the
licenses. Still further, the license management system is
capable of being used in any sized establishment including
large multiple property casinos, a single property casino, or a
small convenience store, tavern, or bar.

Enterprise/Central License Management Method and
License Policies Definition

In the license management system, the license policies
define how licenses are to be accessed and how they are to be
used. The System Operator 600 can define and update these
policies based on a variety of conditions. Customs and juris-
diction or corporate requirements are to be considered when
creating the policy definitions. By way of example, license
policy is to take into consideration a layering of policies to
reflect the hierarchy of clients such that a large multiple
property casino client is given more of a benefit than for a
small client (e.g., small convenience store/tavern/bar). Also,
certain states require policies to not allow certain types of
gambling, and as such the policy is to reflect such require-
ments.

The policy creation process requires that only authorized
people be allowed to update the policies. The policies are
customizable (e.g., additional time allocations or via
expanded content). For example, if a large multiple property
casino entity desires additional time to use and benefit from
certain licenses prior to the G2E event, then this privileged
entity may be allowed a six month term adjustment so as to
operate the policies. This flexibility provides that the best
benefits of the system can be provided to each entity. These
policies can be delivered to the central host 200 and to appro-
priate local site operator 100 sites, either by a direct secure
network connection to either component or through email to
the central distribution center 230 and the local distribution
center 130.

10

25

30

40

45

License Policies Management

The management of the license polices typically defines
access to the license policies. The assignment of the license is
layered, such that the policies can be set out in a hierarchical
manner (i.e., the license either being used corporate-wide,
jurisdiction-wide or statewide, for use by one casino, or by an
individual user). The client with even one individual gaming
machine 10 or a few gaming machines is to be allowed access
to the license policies, as well as licenses stored in the central
distribution center 230. The individual gaming machine 10
may gain access to the policies and the license database.

Additionally the policies are available for specific, indi-
vidual products, or tailored to individual vendors and/or enti-
ties. For example, for a large multiple property entity, such as
a casino, it is desirable to create a specific policy. Note that
such a policy, or all license management policies, are not
available throughout all of the entity’s site. The casino, as a
large multiple property client is entitled to benefits, such as
being given a 30-day trial period of newly licensed software
products before being required to purchase. After 30 days, if
the casino decides to keep the licensed software, then they are
charged the license fee associated with the license following
the six month period, but not before. Also, as a large multiple
property entity, the casino may be provided a prior viewing of
newly developed products for different systems and products
that will be available at a later time, and even the chance to
view and purchase earlier than other entities. On the other
hand, smaller clients may not be entitled to 30 day trials or
prior viewings.

Policies are to be defined to consider different state and
jurisdictional requirements. Certain states may require that
the policies preclude gambling in the state, so policy defini-
tion must include such a prohibition.

Individual License Management

Another embodiment uses the central software license
database 220 to store all the available created software
licenses. The System Operator 600 is responsible for license
creation, and updates the central software license database
220 with the license either by a direct secure network con-
nection to the central distribution center 230 or via email
updates. Transmittal ofthe licenses from the System Operator
600 is one-way, and reading of any portion of the System
Operator’s 600 is precluded and unavailable via the network.
The central distribution center 230 monitors and maintains all
the stored software licenses.

The central license manager 210 controls the license dis-
tribution procedure, and governs the extraction of a product
from the central distribution center 230. Once the proper
license is attached, the product is securely distributed to the
appropriate client. License generation is performed by the
license management method, with a tie-in to the central dis-
tribution center 230 and with the System Operator 600’s
knowledge and/or approval. Upon a proper license request,
from either a large multiple property casino, single property
casino or smaller client, the central license manager 210
communicates with the central distribution center 230 to con-
figure a license for use by a requesting local site operator site

US 9,135,778 B2

87

client. Only the central license manager 210 is to be able to
configure licenses. Each software license stored in the central
software license database 220 has a representative license file.
The license file format can hold various license data, includ-
ing, by way of example and not by way of limitation, the
license request submittal type, license expiration, and a
unique identifier from the submitting gaming device of the
corresponding client, such as its MAC. The configured soft-
ware license is transmitted through the billing manager 240,
where the billing manager 240 compiles, audits, prepares
reports, and registers both the license request and the deliv-
ered license. The central license manager 210, in association
with the billing manager 240, transfers the configured
licenses to the appropriate local site operator site client, then
audits the clients for trusted usage data, to generate queried
reports.

A License Order is a submittal request from an gaming
device 10 tied to the requesting client. The management of the
individual licenses allows requests for a variety of functions.
A License Order request is for one of these functions. The list
of functions, by way of example and not by way of limitation,
includes: (1) Enroll (first time use); (2) Add a new license; (3)
Update an existing license; (4) Revoke a license; (5) Suspend
a license for a period of time; (6) Delete a license; (7) Query
a license; (8) Maintenance and transfer of a license; and (9)
Change an gaming device configuration.

License Status Report

License status reports are provided in the defined license
policies, are event based, and pushed from the gaming device.
The reports are available for a variety of needs, such as to
show how many gaming devices are using a product. For
example, if a casino seeks to buy 20 licenses, only 20 gaming
devices are allowed to operate using the 20 provided licenses.
However, upon the running of a license on the 21st gaming
device, the policy determines how to proceed. For example,
upon using the 21st gaming device, the casino may be notified
that it is using more licenses than it is currently entitled to use
under its contract. In this event, the casino must delete the
extra license to the 21st gaming device within the next two
days or be automatically billed for the extra license. Prefer-
ably, the previous example is the policy for any large multiple
property casino client. For a smaller or single property casino
client, however, the policy is defined so that immediately
upon use by the 21st gaming device, the client is automati-
cally billed for such extra use. No lag or courtesy time is
provided under such policy definition.

In another embodiment, policy definition and usage may be
used for implementation and updating. The policy provides
license status reports that are event based, meaning that they
are pushed from the gaming device. Also, the policy is asso-
ciated with the multi-tiered clients with the system divided
into multiple steps or phases, so that networked clients have
the license management system collect or push the event
status and send it, and the non-networked smaller client
would need to get connected to send the status data. For
example, the proper management license system for a smaller
client, perhaps a single 7-11® store with only a few gaming
devices, is to have the “ping” approach used to properly check
which systems are in place. In this way, the client has to
maintain each gaming device in network contact or else it is
charged for a minimal number of such gaming devices. The
timing of the “ping” is defined by the policy.

Additionally, the policy provides license status reports that
are audit pulls, meaning central host pulls the data from the
clients. For example, central host pulls from every client
property how many games each client is using. The client is
open to pushing up this data to the central host, if the central

10

20

25

30

35

40

45

50

55

60

65

88

license manager address is known. Whether the client is a
large multiple property casino or a smaller client, the request
is sent from the central host to the clients requesting that the
clients send the day’s report on the number of gaming devices
in service. The reports from the clients should include the
proper license count starting on a first date and ending on a
second date. Upon receipt of these reports, the central host
performs audits and then returns the reports to the clients. All
this data can be transferred during minimum traffic periods
and can otherwise be precluded at certain times to minimize
disruption and bandwidth issues. This quick handshake
exchange on a defined and timely basis is available for central
license manager 210 review.

In still another embodiment, multiple license configura-
tions are available. Licenses have minimal data built therein,
but they do contain enough to allow clients to use the game. If
the client is licensed for 20 instances of a game, then the
license is granted until the next update only for such 20
instances. The license could also be defined as unlimited,
such that the client has access to as many licenses and game
instances as desired. A license also can be restricted for a
given term, such as for three months use only, or the client can
have an established relation for as many licenses as they want
as long as this client keeps paying a pre-defined compensation
fee on a required basis.

The license management system defines what is consid-
ered or defined as a play. There are circumstances where
licenses exist on the client’s network, but the licenses may be
dormant or exist in a different state such as perpetual, lease,
revenue sharing, self-enabling, and the like. The central host
manages and controls these licenses, determining when best
to activate them. Certain clients, usually but not necessarily
always large multiple property casino clients, are allowed to
activate the software, and the central host is then provided
status updates on how the clients are using the software
licenses on their systems. There are fees charged for this
self-activating management service, and these fees are set by
the System Operator 600. The fees can be associated with a
specified time period and/or how many times, the license
management system determines use of the license. Prefer-
ably, the associated fee scale ranges from two or three cents
up to twenty cents per event, whatever is appropriate. Of
course, one of ordinary skill in the art will appreciate that any
amount of fee may be used and any method of triggering such
fees may also be used.

Billing Management System Interface

In another embodiment, the license management system
has the ability to monitor and track game use, e.g., how many
games used, purchased, or refused a license. The tracked data
is sent to the billing manager 240. The data sent includes
purchasing client’s billing information, time of activation of
the license, a billed amount, a policy number, and the license
type used. Thereafter, the billing manager 240 knows the
activation date and the bill amount and then automatically
bills the client. The financial data events provided by the
enterprise license manager are an example of a push model.
An audit report is an example of a pull model. This allows the
finance billing manager 240 to be able to see game use and
purchases by logging into the license management system
and extracting a report.

Site Level License Manager

In one embodiment, it is possible to place a license man-
ager at a local site operator site, and the architecture is scal-
able whether it is for a large multiple property casino, single
property casino, or smaller client. A local site operator site is
provided corporate level license management methods, or a
local license manager 110, with the local license manager 110

US 9,135,778 B2

89

communicating directly to the central license manager 210
and central host. With the local license manager 110 in place
locally, licenses that had been created in the central host can
now be created and sent for use by the local site operator. The
local license manager 110 can manage, preview, and distrib-
ute the license, but again, licenses can not be created at the
local site operator site. If more licenses are required for local
distribution, the local license manager 110 requests the cen-
tral host to send the additional licenses.

In this embodiment, the local license manager 110 receives
license requests from a gaming device 10 located within a
large multiple property casino entity since such entity has
been given self-activating license authority. Generally, single
property casino and smaller operators will be required to
submit license requests to the central host 200, if such entities
are not given self-activating licenses. The gaming device 10
can use a system management point console 140 to submit the
license request. Similarly, requests for display of information
can be made through use of the system management point
console 140. The large multiple property entity’s local license
manager 110 retrieves the configured licenses after transfer to
a local software license database 120 from the central host
200 and provides the licenses to the appropriate gaming
devices 10. The local license manager 110 is able to commu-
nicate with any gaming device 10 and to dictate what the
process is for license management. The local distribution
center 130 monitors and maintains the stored software
licenses, and also is responsible for reviewing the requesting
gaming device 10 to verify that the gaming device is capable
of running the requested license that is assigned.

The single property casino operator is given some
autonomy to deal with certain matters, but license self-acti-
vation is not one of them. The smaller operator is allowed to
work off-line where necessary, such that the operator can
choose to connect at various times, but sufficient connections
with the license management system need to exist to allow the
central host 200 at least a weekly update. This “heartbeat
ping” between the smaller operator and the central host 200 is
required or otherwise operations can be suspended and/or
revoked.

The local license manager 110 is able to receive policy
updates. For example, the System Operator 600 may enact a
new company campaign that updates the license policies;
particularly for large multiple property casino clients. This
policy update is pushed down to the large multiple property
casino client’s local license manager 110. Local management
is contacted through various means relating to the changes
and that the entity should review the new policy updates.

The local site operator site and the local license manager
110 are able to receive commands directly from the central
host and the central license manager 210. Commands request-
ing products with certain license numbers or certain products
desired for a variety of functions, for example trial use, are
available. In addition to the push of policies from the central
license manager 210 to the local site operator and the local
license manager 110, there are allowed pulls on policies via
commands to obtain new data and new license requests for the
products. These commands are the License Orders. Note, the
License Order request commands include licenses to be sent
to the various local site operators and local license managers,
but they are not commands that are used to create the licenses.
The central license manager 210 receives all the license
requests, checks and clears the central software license data-
base 220, the central license manager prepares the central
distribution center 230 to be available for access by the local
license manager 110. The central license manager 210 sends
requests to the finance billing manager 240 for billing, and at

10

15

20

25

30

35

40

45

50

55

60

65

90

the completion of these steps, the central license manager 210
notifies local site operator and the local license manager 110
that all licenses requested by the local site operator are avail-
able and in place at the central distribution center 230 and are
ready for download. The local license manager 110 notifies
the system management point console 140 that the local site
operator now has the permission to access and retrieve these
licenses. The system management point console 140 informs
the requesting gaming machines to download and install the
product and licenses to allow use of the products. The
machines use a provided ID and password to perform the
secure download retrieval of these products and license from
the central distribution center 230. The machines install the
products which are enabled via the attached licenses. The
local site operator is not securely sent the items requested, but
rather performs the groundwork of the secure retrieval once
the licenses have been configured and are ready for distribu-
tion. The data associated with the licenses includes the cus-
tomer’s identification and the number of licenses requested.

The central host deals with one pre-set layer within the
client hierarchy, despite the fact that the client request may be
involved with several client layers. The central host can have
access to different client levels of operation or contact points,
but all contact dealings with each client are pre-defined and
setup during initial client record creation. This level of access
is a privilege for the large multiple property casino clients that
have these multiple layers, and typically is not available for
single casino clients and/or the single properties.

In addition, the local site operator site client interface
allows other activities. The local site operator interface pro-
vides for the sending of license commands, the ability of the
local site operator to perform audits, and the ability to log
changes per vendor.

System Management Point Console

With the defined architecture and process flow in place,
products available for sale, and licenses able to be created, the
system management point console 140 verifies that all that is
to be provided and distributed is properly authorized. The
system management point console 140 allows for the creation
and sending of an authorization code that is associated with
the name and identification number of the license. Then using
the authorization code, the system management point console
140 tracks and authenticates the license request. The local site
operator local license manager 110 waits for the created
license code(s) sent by the central host, and upon authentica-
tion the download proceeds.

For example, a casino employee views a new product and
is interested in purchasing a license for that product. How-
ever, the manager may not want the employee to purchasing
a license for that product, or the manager may require a
purchase of two or more licenses. If the employee is still
interested in a license purchase for that product, the employee
makes a request for the license and the system utilizes a
notification mechanism using an authentication mechanism
to indicate that the request is authorized. Once authorization
is made, the provided authorization code is required to be
inserted by the employee to enable use of the license.

Alternatively, the license setup can be configured so that
the authorization code is built-in to the license. In this way,
requests for products can be made without authorization, but
the system then calls for an ID and password input. Thereaf-
ter, the system creates an authorization code at that time
which is used to enable use of the product.

In one embodiment, the local site operator site license
personnel, usually for large multiple property casino clients,
are given authority to self-activate licenses. The self-activat-
ing process allows a manager to request a license without

US 9,135,778 B2

91

knowing the full amount of licenses he requires. These types
of requests are not ignored, and as described above, allow
creation of an authorization code at the time of use for a
license. In this embodiment, there is an integration of both the
authorization and authentication mechanisms such that the
local personnel can obtain an approved and authorized license
at the time of the request from the central host and the central
license manager 210.

The local license request is integrated with the system
management point console 140, as the system management
point console 140 knows the true allotment of licenses. The
system management point console 140 sends a notification of
the allotment count to the sites manager if the site’s manager
requests such information. The manager can then determine
whether to retrieve the data or not. With an employee inter-
ested inthe license purchase, it is likely the employee does not
initially know the allotment of licenses available. This can be
the case for a manager as well, but the manager has the option
and capability to find out the allotment count allocated by
access to the system. Upon learning the actual allotment
count, ifan attempt is made to purchase a game exceeding this
number, then the manager and employee know that the game
needs to be purchased. The system management point con-
sole 140 at this time informs the manager that the game
purchase is for a license exceeding the allotted count, and asks
if the game is to be purchased. The manager and employee
make the decision at that time whether to reject or to purchase
the game. The system management point console 140 at this
time knowing ofthe purchase, and knowing that it exceeds the
license allotment for the manager, then asks for a license
creation or additional allocation from the local license man-
ager 110. Since this is a new license that exceeds the allocated
count, the local license manager 110 requests a license from
the central license manager 210.

If the license, and subsequently the game, is purchased,
then the central host and the central license manager 210
authorize the purchase. An authorization code is created by
the central host and the central license manager 210, which
then places the code in the central distribution center 230. The
local license manager 110 is informed of the authorization
generation, which then evaluates the code and the request.
The local license manager 110, noticing the request would
exceed the allocated license count for the manager, sends
notification to the system management point console 140 that
it recognizes that the manager’s allocation has been
exceeded, but the purchase of this game is authorized and that
use of the authorization is accepted. The system management
point console 140 then notifies the manager to now retrieve
the authorization code by a download from the central distri-
bution center 230, insert it to the game to install the product on
the gaming device which allows play of the enabled game.
This is the self-activation for local site operator sites, typi-
cally large multiple property casino clients, and is a fast
mechanism to get licenses authorized and games in play.

An alternative summarized seven step process flow
requires: (1) system management point console 140 receives
license request from an gaming device 10; (2) gaming device
10 requests license from central distribution center 230; (3)
central distribution center 230 responds to the request by
relaying request to local license manager 110; (4) local
license manager 110 requests the license from central host
and central license manager 210; (5) central license manager
210 creates a license and sends it to local license manager
110, which stores the license on local distribution center 130;
(6) local distribution center 130 transfers the license to the
gaming device 10; and (7) gaming device 10 installs the

30

35

40

45

92

license and enables game play. FIG. 36 illustrates the alter-
native seven step self-activating license process flow.

The local software license database 120 always checks
with the central distribution center 230 for products, obtain-
ing the available game products and licenses and its content.
The SMP console 140 is responsible for monitoring and the
notification of responsible parties to download and deploy the
licenses.

Billing Proxy (Local Site Operator)

The billing proxy 134 sends the local site operator financial
information to the billing manager 240. Also, the billing
proxy 134 is responsible for distribution of the vertical man-
agement system as it is the interface between the central host
and the local site operator. It is also used for tracking, pulling
the local site operator client meters for revenue sharing and to
make sure that the client’s licenses are recorded properly.
Without this information it would be difficult to know if the
central host is receiving revenue from the client’s gaming
device 10.

Security

In another embodiment, a secure Ethernet connection 300
is used to transmit information to and from gaming establish-
ments over a public network using encryption. In one embodi-
ment, the authentication and encryption used relies on the
Secure Sockets Layer (SSL) trust model established to pro-
vide security for web traffic. Also, all necessary and confi-
dential gaming content provided by the central host 200 is
available to the local site operator 100 gaming operator and
patron clients via a plurality of conditional access systems.
The central host 200 distributes its content over the network,
allowing the local site operators and patrons, large and small,
access to this content via secure individual access rights. With
ever increasing security and technical requirements, the cen-
tral host 200 uses a number of different conditional access
systems, with typically each conditional access system
requiring its own conditional access component. A condi-
tional access component includes both hardware and soft-
ware, with the software including a content provider’s appli-
cation loaded into the non-volatile memory of the component.
The local site operator 100 with just one conditional access
component gains access to contents distributed with all the
central host 200 conditional access systems, and also is selec-
tively enabled for any of the plurality of conditional access
systems, subject to the successful acquisition of a license.

Alternative choices are to allow use of the certification
process, public/private keys, or use of a different encryption
mechanism. The options are not inclusive, but provide for a
system that is convenient for all parties.

To provide security assurances for the networked system,
the network system is a separate system to itself, utilizing an
independent security system server, with all the systems on
the network being secured clients. The independent master
security system server provides the security for all the net-
worked clients. Even this central security system is also com-
pliant for security reasons. The independent master security
server is to perform constant security tests, including making
false alarms, to provide assurances that the system is secure.

The security management interface allows the System
Operator to monitor clients, including evaluation of how
many processors are running on a client system. Having cli-
ents required to register onto the security server as well as via
a separate server on the system allows for a running processor
count that can be compared with previous existing client
profiles to determine actual usage as compared with allowed
usage per client. This monitors the process to determine

US 9,135,778 B2

93

which client is healthy and which client is not healthy, or
which software is required and which software is not
required.

As noted, the security system controls the conditional
access for certificate expiration and/or rollover. All access
and communications are to be encrypted. Security is to
actively record logins, and attempted logins, to the network.
Records include how many attempts, failed attempts and who
did it lock on the system. Security is the guide to verify the
system is secure and nothing is malfunctioning. The client is
to keep security data as well and then transfer it to central
host.

Third Parties

One embodiment for use with third parties 400 requires
that the central host 200 and its license management operates
not only work within the System Operator’s networks, but
also within third party competing networks. With the System
Operator’s system, the third party 400 can network its distri-
bution server and provide its license management through the
System Operator.

Third party 400 network connections consist of VPN or the
like, and the third party 400 can connect to the central host,
the local site operator, or both. Registration with the System
Operator’s network system allows the System Operator to
manage the third party 400 content, licensing, reporting, and
auditing, with authentication and validation from the System
Operator or as directed to the third party 400 network. Reg-
istration also allows for proper billing and integration with the
billing manager 240. An authentication code is provided to
allow the third party 400 to authenticate its data at any time.
The content involved is encrypted such that the System
Operator does not have access to the third party 400 internal
information.

Regarding license management, the third party 400 creates
and then uploads its policy. The System Operator does not
know anything about the policy, nor does it need to know. The
third party 400 sends its product information to the System
Operator in a secure manner to a secure portion of the System
Operator’s network system. Licenses corresponding to this
product information are then created and configured. The
final product licenses are then distributed back to the third
parties 400, according to the defined policy. Secure login is
established to allow viewing of the data and its licenses.

The third party 400 sends data under its policy restriction
requirements. The policy describes how to use certification
encryption with private/public key for any transfers. Data
transferred from the third party 400 is sent with encryption
and key, and the System Operator upon receipt of the
encrypted data and key uses the proper encryption mecha-
nism to then allow the third party 400 to securely retrieve the
configured license, as noted above.

The System Operator may charge the third parties 400 a
nominal fee for this licensing service, be it on a per transac-
tion basis or on a numbered license basis. Additionally, the fee
structure can consist of an annual subscription with monthly
payments, or there can be revenue sharing. In short, any
financial model may be used. The license management ser-
vice can be for single transactions or for a combination of
services. The third party 400 policy establishes that the third
party 400°s product and license is sent to a specified third
party 400 gaming device, with proper certification supported
by the third party 400 so as to enable only that receiving
gaming device to decrypt the attached message from the
System Operator and to use the product with its attached
license.

To the System Operator, the third parties 400 remain as
anonymous and discreet entities having data the System

20

30

40

45

50

65

94

Operator does not see or need to see. Virus detection is to be
included, with the virus definitions up to date. To prevent a
potential virus from disabling the network, the independent
master security server monitors the system and client virus
detection activity. As long as the third party 400 achieves its
desired results, including that the proper gaming device
receives the message and is able to process the message,
which is all that the third party needs. All the System Operator
does is send a license key, and it does not need to know the
product. When the System Operator sees a cleared license
from the third party 400 transactions, then the billing manager
240 generates the appropriate bill to conclude the license
transaction. Thus, third parties 400 are allowed to use the
System Operator’s network system and its infrastructure for
secure and proper license management.

The system is to be able to audit its own systems as well as
the third party 400 systems. This includes a choice of using a
DVD jukebox to select reference content, and performing
binary comparisons between the physical reference and the
target content. Audit reports include count of transactions,
date of transactions, and date of collection. The audit is to
occur while the transaction is ongoing, and third parties 400
should not see this audit. For example, where a third party
transacted for a number of licenses, a simultaneous transpir-
ing audit shows data of the transaction, which corresponding
products were sold, and the time of the collection. Addition-
ally, this audit is unnoticed by the third party.

Regulatory System

Another embodiment used with a regulator 500 provides a
simplified process for software regulation. Here, a regulator
can logon to both the central host 200 and the local site
operator 100 and use private accounts and disk allotments to
access game software. Upon approval and notification from
regulatory testing that the software is approved, such notifi-
cation is submitted to the central host 200. This software
notification is authenticated and its source is known, for
instance from Nevada or New Jersey gaming commissions,
using the authentication process and security measures as
detailed above.

When a game is developed and/or modified, a change man-
agement system informs all interested parties that a change
has occurred or is about to occur. At the gaming device level,
there are existing tests that can perform this operation. But in
a distribution system and in networks with third party ven-
dors, there are limited methods to monitor software changes
and updates and to provide notification of these changes to the
software. The process includes downloads of the product,
with allowance for an automatic transfer to compliance,
which builds the product and upon completion transfers it to
the regulator. The regulators receive notification of the prod-
uct transfer by various means, including wireless or via email.
Also, the regulators have remote login access to the system
and are able to do whatever they want, regarding, auditing,
accounting, reporting or regarding the application to the other
systems.

Building a regulatory system 500 within the System
Operator’s network system provides the regulators with a
secure and separate region or partition on the network. The
build process is simplified for the product by having the
regulator log into the System Operator’s server and build the
product on the System Operator’s servers using its private
accounts and disk partitions. Compliance can then securely
transfer its software to the regulators who are always avail-
able to view the software. Thus, it is no longer necessary to
send out physical media. This avoids the delays and costs
associated with transport. The regulators have a secure sepa-
rate system and maintain everything on that secure system.

US 9,135,778 B2

95

The regulator system 500 is totally separate from the System
Operator’s system. The network system includes encryption,
with remote login password having secure levels of access.
The only thing visible to the System Operator is when the
software is placed into the regulator system 500. Then this
software cannot be accessed by the System Operator as it is a
oneway flow of software. When an approval is made, it is sent
via the regulatory system 500 area electronically, and the
approved software is uploaded onto the distribution server
system (central distribution center 230).

The approval and notification regulatory process proceeds
as normal. At this point, there can be iterations of corrections
on the regulatory documents. With regulatory product
approval, the approval is to be uploaded to the System Opera-
tor’s database. Data included with this approval includes
what the product is, the date it was approved, what was
approved, and any issue that is requires correction. All these
details are placed into the audit trail. Within the database
system resides a single record with all attached information
needed regarding the product. If the product is not approved,
that too is uploaded. Included with this message is how many
divisions there were, what the divisions were, what fixes have
not been delivered, and the like.

With regulatory testing on the software, the system pro-
vides that when a product is approved, there is an immediate,
authorized notification of approval. The encryption process
can provide information such as from where the regulator is
submitting the approval (e.g., Nevada or New Jersey). If the
regulatory system is hierarchical and several regulators can
work on one product, then the approval conveyance is a single
message, preferably from personnel or management capable
of transmitting the authorized message. Notification of any
approval or rejection edits on the database is sent by a variety
of means to the appropriate party on a distribution list,
whether by email, wired, wireless, pager, and the like. The
authentication scheme uses, by way of example, SSL type
certificates, so only authenticated systems are permitted. The
database is universal, but its tables are restricted per account.

Since not all software is approved the first time by the
regulators, the regulator logon can include immediate elec-
tronic notification of any bugs and problems concerning the
software, and then a database of the products and their status
can incorporate these regulator bug reports for distribution to
the proper parties for faster response to regulator’s concerns.
The database tracks the software test status, including various
user/priority levels, and integrates this information with the
billing manager 240 to generate reports of logged activity,
including product approval and/or revocation, log of notifi-
cations, and bug repair status.

A log system is available for all edits, with a variety of use
cases for what type of reporting can be done on the database.
The list is as follows, but is not inclusive: approved, revoca-
tion, issues for unit under test, supervisor authorization,
maintenance of user accounts/configuration, notification,
query of product status/general reporting, and review logs.

Once a product is uploaded, whether software or hardware,
then as an approved product it goes to the central distribution
center 230. Sometimes products are transferred from market
to market without approval to allow for movement of prod-
ucts to the distribution server. The distribution system may
have different access levels and the regulator may have access
at this point to ascertain that nothing improper has occurred.
Thus, the regulator is satisfied that the transfer is secure and
proper. From the distribution server, the product then goes to
the clients. There is security for each component. A third
party 400 can connect to the central distribution center 230,
but only after regulatory approval.

10

15

20

25

30

35

40

45

50

55

60

65

96

There is a mechanism that separates the regulatory system
500 from the central distribution center 230, allowing secure
software upload transfers. This activity is logged, including
who did it and when it was done. The clients need the ability
to see approved product inventory, to then request downloads,
if desired. For example, different gaming jurisdictions have
proxy access to the regulators, with the ability to only see their
own markets where the games are approved, including who
approved it, and if lottery or casino approval is provided.
Consequently, where it is approved they would always have
control of the gaming device. Under the System Operator’s
system it has access but not control. It is allowed to check and
verify the approved software or to download the software for
testing.

Other Features

Another LMS embodiment related to the product licensing
is the allowance to slice a product license per existing system
components, such that licenses are part and parcel within the
system at the component level. A hardware or software prod-
uct is either a single entity or a composite of a number of
features, with the variety of features provided by one or more
vendors having other license policies. The LMS feature here
allows the use of one license for the collected parts making up
the one product, or provide separate licenses for each part or
component that collectively make this product. This includes
licensing a product or a component to a client with a single
gaming machine used one at a time, or to larger gaming
clients having multiple gaming machines used by multiple
patrons at any one time.

Additional features in this LMS embodiment is the allow-
ance related to licensing that certain games and equipment,
including components, can be ‘rented out’ as a function of
time. Compared to the ‘purchased’ fixed-length licensing
model, in a ‘rented-out’ licensing mode a client has the allow-
ance to support capacity on demand, with an advantage to not
be required to replenish any capacity duration if it becomes
depleted. The certain games and equipment rented out is
covered under licensing agreements, with the amount of rent-
able time for the equipment or games based on the licenses.
Relations with the clients can be defined and built for future
engagements where the client uses un-planned capacity on
the fly.

The various embodiments described above are provided by
way of illustration only and should not be construed to limit
the claimed invention. Those skilled in the art will readily
recognize various modifications and changes that may be
made to the claimed invention without following the example
embodiments and applications illustrated and described
herein, and without departing from the true spirit and scope of
the claimed invention, which is set forth in the following
claims.

What is claimed is:

1. A license management system for providing centralized
management of licenses in a gaming environment site, the
system comprising:

a plurality of gaming devices;

a site software license database;

a site operator system including one or more servers pro-
grammed to a site license manager, a local site distribu-
tion center, and a system management control station,
wherein the site operator system receives one or more
license requests from one or more of the plurality of
gaming devices, each license request having an associ-
ated authorization code;

a central software database that stores licenses;

a central host server that is in communication through a
network with the site operator system, wherein the cen-

US 9,135,778 B2

97

tral host server is configured to define a license manager,
a central distribution center, and a billing manager,

wherein the central host server receives one or more license
requests from the site operator,
wherein only the central license manager configures one or
more of the licenses stored at said central software data-
base by communicating with the central distribution
center in response to the central host server receiving the
one or more license requests from the local site operator,

wherein the configured one or more licenses are transmit-
ted through the billing manager to the site software
license database, wherein the site license manager
retrieves the one or more configured licenses stored on
the site software license database and transfers the one or
more configured licenses to the one or more gaming
devices associated with the one or more license requests;
and

a system operator server that is responsible for the creation

of the licenses stored in the central software license
database,

wherein the system operator server communicates to the

billing manager and the central software license data-
base through said network;

wherein the license management system authorizes a pur-

chase of one or more licenses by one or more license
requests, creates an authorization code for each license
request, places each authorization code in the central
distribution center, and informs the site license manager
of each authorization code generation, and

wherein the site license manager evaluates each authoriza-

tion code and each license request, determines whether
each authorization code and each license request for a
license should be accepted based on a predetermined
license policy, and accepts each authorization code and
each license request if in accordance with the license
policy, and in response to license policy approval, down-
loads each approved authorization code to the gaming
device associated with the license request and includes
each approved authorization code to enable play of a
game associated with each approved authorization code.

2. The system of claim 1, wherein the license management
system generates and maintains accounting records.

3. The system of claim 1, wherein the license management
system generates an audit trail that includes who authorized
the purchase of the license.

4. The system of claim 1, wherein the license management
system generates and maintains logs for licenses that are
generated and distributed throughout the system.

5. A license management system for providing centralized
management of licenses in a gaming environment site, the
system comprising:

a plurality of gaming devices;

a site software license database;

one or more site servers configured to define a site license

manager, a site distribution center, and a system man-
agement control station,

wherein the site license manager receives a license request

from a gaming device, and

wherein the site license manager responds to the license

request by relaying the license request;

a central software license database that stores licenses;

a central host server that is networked through an FEthernet

connection to the one or more site servers,

wherein the central host server is configured to define a

central license manager, a central distribution center,
and a billing manager, wherein the central host server
receives the relayed license request from the site license

10

15

25

30

35

40

45

50

55

60

65

98

manager, wherein only the central license manager con-
figures a stored license by communicating with the cen-
tral distribution center in response to the central host
receiving the relayed license request from the site
license manager,

wherein the central host sends the configured license
through the billing manager to the site license manager
which stores the configured license at the site distribu-
tion center; and

wherein the site license manager retrieves the configured
license stored on the site software license database;

a system operator server that is responsible for the creation
of the licenses stored in the central software license
database, the licenses being in accordance with a license
policy,

wherein the system operator server communicates to the
billing manager and the central software license data-
base through said Ethernet connection;

wherein the site distribution center transfers the configured
license to the gaming device associated with the license
request, and enables the gaming device to install the
configured license and commence game play.

6. The system of claim 5, wherein the license management

system generates and maintains accounting records.

7. The system of claim 5, wherein the license management
system generates an audit trail that includes who authorized
the purchase of the license.

8. The system of claim 5, wherein the license management
system generates and maintains logs for licenses that are
generated and distributed throughout the system.

9. A license management system for providing centralized
management of licenses in a gaming environment site, the
system comprising:

a plurality of gaming devices;

a site software license database;

a site operator defined by one or more servers configured to
include a site license manager, a site distribution center,
and a system management point console,

wherein the site license manager receives one or more
commands that include license requests for products
with associated license numbers,

wherein the license request originate from one or more of
the plurality of the gaming devices;

a central software database that stores licenses; and

a central host server that is networked through a secure
Ethernet connection to the site operator,

wherein the central host server is configured to define a
central license manager, a central distribution center,
and a billing manager, wherein the central host server
receives commands from the site operator,

wherein the central license manager receives all of the
license requests associated with the commands and
checks and clears the central software license database,
and

wherein only the central license manager prepares the cen-
tral distribution center to be available for access by the
site license manager; and

a system server that is responsible for the creation of the
licenses stored in the central software license database,

wherein the system server communicates one-way to said
billing manager and the central software license data-
base through an Ethernet connection;

wherein the central license manager sends billing requests
to said billing manager, the site operator and the local
license manager are notified that all licenses requested
by the site operator are available, in place at the central
distribution center, and ready for download,

US 9,135,778 B2

99

wherein the system management point console is notified
that the site operator has the permission to access and
retrieve the requested licenses, and

wherein the requesting gaming devices are instructed to
download and install the product and associated licenses
from the site operator and the site license manager which
accessed and retrieved the requested licenses from the
central distribution center to enable the products on the
gaming devices.

10. The system of claim 9, wherein the license manage-

ment system generates and maintains accounting records.

11. The system of claim 9, wherein the license manage-
ment system generates an audit trail that includes who autho-
rized the purchase of the license.

12. The system of claim 9, wherein the license manage-
ment system generates and maintains logs for licenses that are
generated and distributed throughout the system.

13. A license management system for providing central-
ized management of licenses in a gaming environment site,
the system comprising:

a plurality of gaming devices at said site;

a site software license database;

a site operator that includes a site license manager server, a
site distribution center server, and a system management
point console,

wherein the site license manager server receives license
requests from gaming devices using the system manage-

5

10

15

20

100

ment point console, and requests licenses associated
with the license requests be sent from a central distribu-
tion center to the gaming devices;

a central software license database that stores the licenses;

a central host server that is networked through a secure
Ethernet connection to the one or more servers of the site
operatot,

wherein the central host server is configured to define a
central license manager, a central distribution center,
and a billing manager,

wherein the central host server responds to the relayed
request for the licenses from the site license manager
server,

wherein only the central license manager configures the
stored licenses by communicating with the central dis-
tribution center in response to the central host server
receiving the relayed license requests,

wherein the central host server sends the configured
licenses to the site license manager server, which stores
the configured licenses on the site distribution center
server, and

wherein the configured licenses are transterred to the gam-
ing devices via the site distribution center server, and
installed on the gaming devices thereby enabling game
play.

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,135,778 B2 Page 1 of 2
APPLICATION NO. 1 12/263342

DATED : September 15, 2015

INVENTORC(S) : Pravinkumar Patel

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

IN THE SPECIFICATION

Column 2, In line 27, insert --A-1-- after “2”

Column 2, In line 30, insert -- -2-- after “2A”

Column 2, In line 42, insert --A-- after <“3”

Column 2, In line 52, insert --A-- after “4”

Column 2, In line 66, replace “FIG. 10” with --FIGS. 10-1 and 10-2--
Column 3, In line 64, insert --A-1-- after “FIGS. 2”

Column 3, In line 64, insert -- -2-- after “2A”

Column 4, In line 60, replace “manufacturer’s” with --manufacturers’--
Column 4, In line 63, replace “FIG. 27 with --FIGS. 2A-1--

Column 4, In line 63, insert -- -2-- after “2A”

Column &, In line 17, replace “features™ with --failures--

Column 9, In line 29, replace “2A-E” with --2A-1-E--

Column 11, In line 15, insert --A-- after <3”

Column 13, In line 37, replace “FIG. 4 with --FIGS. 4A--

Column 13, In line 50, insert --A-- after “FIGS. 47

Column 17, In line 50, add --s-- to “value”

Signed and Sealed this
First Day of March, 2016

Decbatle X Loa

Michelle K. Lee
Director of the United States Patent and Trademark Office

CERTIFICATE OF CORRECTION (continued)
U.S. Pat. No. 9,135,778 B2

IN THE SPECIFICATION

Column 17, In line 50, add --d-- to “change”™

Column 19, In line 4, replace “ands™ with --commands--

Column 23, In line 29, replace “AllowedValues™ with --Allowed Values--
Column 26, In line 60, replace “FIG. 10” with --FIGS. 10-1 and 10-2--
Column 27, In line 47, replace “ConfigMgrntObj” with --ConfigMgmtObj--
Column 39, In line 3, replace “aver” with --over--

Column 39, In line 65, replace “itrequires” with --it requires--

Column 43, In line 34, replace “vlaidation” with --validation--
Column 50, In line 16, add --ed-- to “download”

Column 55, In line 2, replace “os” with --of--

Column 55, In line 6, replace “mush” with --much--

Column 56, In line 8, after “what” delete “has”™

Column 56, In line 9, delete “more”

Column 63, In line 17, replace “simply” with --simplify--

Column 65, In line 12, delete “vary”

Column 65, In line 40, after “results” insert --in--

Column 71, In line 6, replace “This” with --These--

Column 81, 82, In line 48, replace “witih” with --with--

Column 87, In line 17, replace “an” with --a--

Column 90, In line 49, replace “purchasing” with --purchase--

Column 91, In line 51, replace “to” with --into-- (1st occurrence)

Page 2 of 2

